IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v179y2016icp247-260.html
   My bibliography  Save this article

Improving the accuracy of energy baseline models for commercial buildings with occupancy data

Author

Listed:
  • Liang, Xin
  • Hong, Tianzhen
  • Shen, Geoffrey Qiping

Abstract

More than 80% of energy is consumed during operation phase of a building’s life cycle, so energy efficiency retrofit for existing buildings is considered a promising way to reduce energy use in buildings. The investment strategies of retrofit depend on the ability to quantify energy savings by “measurement and verification” (M&V), which compares actual energy consumption to how much energy would have been used without retrofit (called the “baseline” of energy use). Although numerous models exist for predicting baseline of energy use, a critical limitation is that occupancy has not been included as a variable. However, occupancy rate is essential for energy consumption and was emphasized by previous studies. This study develops a new baseline model which is built upon the Lawrence Berkeley National Laboratory (LBNL) model but includes the use of building occupancy data. The study also proposes metrics to quantify the accuracy of prediction and the impacts of variables. However, the results show that including occupancy data does not significantly improve the accuracy of the baseline model, especially for HVAC load. The reasons are discussed further. In addition, sensitivity analysis is conducted to show the influence of parameters in baseline models. The results from this study can help us understand the influence of occupancy on energy use, improve energy baseline prediction by including the occupancy factor, reduce risks of M&V and facilitate investment strategies of energy efficiency retrofit.

Suggested Citation

  • Liang, Xin & Hong, Tianzhen & Shen, Geoffrey Qiping, 2016. "Improving the accuracy of energy baseline models for commercial buildings with occupancy data," Applied Energy, Elsevier, vol. 179(C), pages 247-260.
  • Handle: RePEc:eee:appene:v:179:y:2016:i:c:p:247-260
    DOI: 10.1016/j.apenergy.2016.06.141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916309291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong, Tianzhen & Piette, Mary Ann & Chen, Yixing & Lee, Sang Hoon & Taylor-Lange, Sarah C. & Zhang, Rongpeng & Sun, Kaiyu & Price, Phillip, 2015. "Commercial Building Energy Saver: An energy retrofit analysis toolkit," Applied Energy, Elsevier, vol. 159(C), pages 298-309.
    2. Oldewurtel, Frauke & Sturzenegger, David & Morari, Manfred, 2013. "Importance of occupancy information for building climate control," Applied Energy, Elsevier, vol. 101(C), pages 521-532.
    3. Pisello, Anna Laura & Asdrubali, Francesco, 2014. "Human-based energy retrofits in residential buildings: A cost-effective alternative to traditional physical strategies," Applied Energy, Elsevier, vol. 133(C), pages 224-235.
    4. Granderson, Jessica & Price, Phillip N. & Jump, David & Addy, Nathan & Sohn, Michael D., 2015. "Automated measurement and verification: Performance of public domain whole-building electric baseline models," Applied Energy, Elsevier, vol. 144(C), pages 106-113.
    5. Xia, Xiaohua & Zhang, Jiangfeng, 2013. "Mathematical description for the measurement and verification of energy efficiency improvement," Applied Energy, Elsevier, vol. 111(C), pages 247-256.
    6. Jonathan Wiley & Justin Benefield & Ken Johnson, 2010. "Green Design and the Market for Commercial Office Space," The Journal of Real Estate Finance and Economics, Springer, vol. 41(2), pages 228-243, August.
    7. Walter, Travis & Price, Phillip N. & Sohn, Michael D., 2014. "Uncertainty estimation improves energy measurement and verification procedures," Applied Energy, Elsevier, vol. 130(C), pages 230-236.
    8. Granderson, Jessica & Price, Phillip N., 2014. "Development and application of a statistical methodology to evaluate the predictive accuracy of building energy baseline models," Energy, Elsevier, vol. 66(C), pages 981-990.
    9. Chung, William & Hui, Y.V. & Lam, Y. Miu, 2006. "Benchmarking the energy efficiency of commercial buildings," Applied Energy, Elsevier, vol. 83(1), pages 1-14, January.
    10. Taylor, James W. & de Menezes, Lilian M. & McSharry, Patrick E., 2006. "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, Elsevier, vol. 22(1), pages 1-16.
    11. Xu, Pengpeng & Chan, Edwin Hon-Wan & Qian, Queena Kun, 2011. "Success factors of energy performance contracting (EPC) for sustainable building energy efficiency retrofit (BEER) of hotel buildings in China," Energy Policy, Elsevier, vol. 39(11), pages 7389-7398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wei & Hong, Tianzhen & Li, Nan & Wang, Ryan Qi & Chen, Jiayu, 2019. "Linking energy-cyber-physical systems with occupancy prediction and interpretation through WiFi probe-based ensemble classification," Applied Energy, Elsevier, vol. 236(C), pages 55-69.
    2. Yigang Wei & Yan Li & Meiyu Wu & Yingbo Li, 2020. "Progressing sustainable development of “the Belt and Road countries”: Estimating environmental efficiency based on the Super‐slack‐based measure model," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 521-539, July.
    3. Jinrong Wu & Su Nguyen & Damminda Alahakoon & Daswin De Silva & Nishan Mills & Prabod Rathnayaka & Harsha Moraliyage & Andrew Jennings, 2024. "A Comparative Analysis of Machine Learning-Based Energy Baseline Models across Multiple Building Types," Energies, MDPI, vol. 17(6), pages 1-18, March.
    4. Ziras, Charalampos & Heinrich, Carsten & Pertl, Michael & Bindner, Henrik W., 2019. "Experimental flexibility identification of aggregated residential thermal loads using behind-the-meter data," Applied Energy, Elsevier, vol. 242(C), pages 1407-1421.
    5. Wang, Wei & Chen, Jiayu & Huang, Gongsheng & Lu, Yujie, 2017. "Energy efficient HVAC control for an IPS-enabled large space in commercial buildings through dynamic spatial occupancy distribution," Applied Energy, Elsevier, vol. 207(C), pages 305-323.
    6. Lumbreras, Mikel & Garay-Martinez, Roberto & Arregi, Beñat & Martin-Escudero, Koldobika & Diarce, Gonzalo & Raud, Margus & Hagu, Indrek, 2022. "Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters," Energy, Elsevier, vol. 239(PD).
    7. Díaz, Julián Arco & Ramos, José Sánchez & Delgado, M. Carmen Guerrero & García, David Hidalgo & Montoya, Francisco Gil & Domínguez, Servando Álvarez, 2018. "A daily baseline model based on transfer functions for the verification of energy saving. A case study of the administration room at the Palacio de la Madraza, Granada," Applied Energy, Elsevier, vol. 224(C), pages 538-549.
    8. Liu, Jiangyan & Chen, Huanxin & Liu, Jiahui & Li, Zhengfei & Huang, Ronggeng & Xing, Lu & Wang, Jiangyu & Li, Guannan, 2017. "An energy performance evaluation methodology for individual office building with dynamic energy benchmarks using limited information," Applied Energy, Elsevier, vol. 206(C), pages 193-205.
    9. Lee, Junghun & Yoo, Seunghwan & Kim, Jonghun & Song, Doosam & Jeong, Hakgeun, 2018. "Improvements to the customer baseline load (CBL) using standard energy consumption considering energy efficiency and demand response," Energy, Elsevier, vol. 144(C), pages 1052-1063.
    10. Capizzi, Giacomo & Sciuto, Grazia Lo & Cammarata, Giuliano & Cammarata, Massimiliano, 2017. "Thermal transients simulations of a building by a dynamic model based on thermal-electrical analogy: Evaluation and implementation issue," Applied Energy, Elsevier, vol. 199(C), pages 323-334.
    11. Eissa, M.M., 2019. "Developing incentive demand response with commercial energy management system (CEMS) based on diffusion model, smart meters and new communication protocol," Applied Energy, Elsevier, vol. 236(C), pages 273-292.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Xianming & Xia, Xiaohua, 2016. "Optimal metering plan for measurement and verification on a lighting case study," Energy, Elsevier, vol. 95(C), pages 580-592.
    2. Angeliki Mavrigiannaki & Kostas Gobakis & Dionysia Kolokotsa & Kostas Kalaitzakis & Anna Laura Pisello & Cristina Piselli & Rajat Gupta & Matt Gregg & Marina Laskari & Maria Saliari & Margarita-Niki A, 2020. "Measurement and Verification of Zero Energy Settlements: Lessons Learned from Four Pilot Cases in Europe," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    3. Wang, Wei & Chen, Jiayu & Huang, Gongsheng & Lu, Yujie, 2017. "Energy efficient HVAC control for an IPS-enabled large space in commercial buildings through dynamic spatial occupancy distribution," Applied Energy, Elsevier, vol. 207(C), pages 305-323.
    4. Fu, Hongxiang & Baltazar, Juan-Carlos & Claridge, David E., 2021. "Review of developments in whole-building statistical energy consumption models for commercial buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Olinga, Zadok & Xia, Xiaohua & Ye, Xianming, 2017. "A cost-effective approach to handle measurement and verification uncertainties of energy savings," Energy, Elsevier, vol. 141(C), pages 1600-1609.
    6. Granderson, Jessica & Touzani, Samir & Custodio, Claudine & Sohn, Michael D. & Jump, David & Fernandes, Samuel, 2016. "Accuracy of automated measurement and verification (M&V) techniques for energy savings in commercial buildings," Applied Energy, Elsevier, vol. 173(C), pages 296-308.
    7. Ke, Ming-Tsun & Yeh, Chia-Hung & Su, Cheng-Jie, 2017. "Cloud computing platform for real-time measurement and verification of energy performance," Applied Energy, Elsevier, vol. 188(C), pages 497-507.
    8. Suwon Song & Chun Gun Park, 2019. "Alternative Algorithm for Automatically Driving Best-Fit Building Energy Baseline Models Using a Data—Driven Grid Search," Sustainability, MDPI, vol. 11(24), pages 1-11, December.
    9. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    10. Zhan, Sicheng & Liu, Zhaoru & Chong, Adrian & Yan, Da, 2020. "Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking," Applied Energy, Elsevier, vol. 269(C).
    11. Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
    12. Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2017. "Low-cost energy meter calibration method for measurement and verification," Applied Energy, Elsevier, vol. 188(C), pages 563-575.
    13. Alain Poulin & Marie-Andrée Leduc & Michaël Fournier, 2022. "Statistical Analysis of Baseline Load Models for Residential Buildings in the Context of Winter Demand Response," Energies, MDPI, vol. 15(12), pages 1-14, June.
    14. Wang, Wei & Hong, Tianzhen & Li, Nan & Wang, Ryan Qi & Chen, Jiayu, 2019. "Linking energy-cyber-physical systems with occupancy prediction and interpretation through WiFi probe-based ensemble classification," Applied Energy, Elsevier, vol. 236(C), pages 55-69.
    15. Rachael Sherman & Hariharan Naganathan & Kristen Parrish, 2021. "Energy Savings Results from Small Commercial Building Retrofits in the US," Energies, MDPI, vol. 14(19), pages 1-16, September.
    16. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    18. Deng, Qianli & Jiang, Xianglin & Cui, Qingbin & Zhang, Limao, 2015. "Strategic design of cost savings guarantee in energy performance contracting under uncertainty," Applied Energy, Elsevier, vol. 139(C), pages 68-80.
    19. Ziras, Charalampos & Heinrich, Carsten & Pertl, Michael & Bindner, Henrik W., 2019. "Experimental flexibility identification of aggregated residential thermal loads using behind-the-meter data," Applied Energy, Elsevier, vol. 242(C), pages 1407-1421.
    20. Ye, Xianming & Xia, Xiaohua & Zhang, Jiangfeng, 2014. "Optimal sampling plan for clean development mechanism lighting projects with lamp population decay," Applied Energy, Elsevier, vol. 136(C), pages 1184-1192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:179:y:2016:i:c:p:247-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.