IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v190y2024ics0301421524001617.html
   My bibliography  Save this article

Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China

Author

Listed:
  • Wang, Manyu
  • Wei, Chu

Abstract

Reducing carbon emissions from residential heating has become a global priority due to the urgency of mitigating climate change. In rural areas, there is a tension between the heavy reliance on traditional energy and the necessity for revitalization. Therefore, conducting a comprehensive assessment of heating energy consumption and carbon reduction potential is crucial. This study utilized a bottom-up statistical model to examine energy dynamics in northern rural China based on large-scale household surveys (n = 6150 rural households from 15 provinces) conducted between 2012 and 2017. Heating energy consumption was estimated to reach 175–275 Mtce in 2030 and 137–245 Mtce in 2050, and related carbon emissions were 466–736 million tons and 318–574 million tons, respectively. Furthermore, by implementing solid policies, including improving poorly installed building envelopes, enhancing renewable energy, promoting heat pumps adoption, and encouraging occupants' green behavior, carbon emissions can be reduced by 41.2%–76.2%. This study's findings offer governments valuable insights into strategies for reducing carbon emissions.

Suggested Citation

  • Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:enepol:v:190:y:2024:i:c:s0301421524001617
    DOI: 10.1016/j.enpol.2024.114141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421524001617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    2. Maximilian Auffhammer & Catherine D. Wolfram, 2014. "Powering Up China: Income Distributions and Residential Electricity Consumption," American Economic Review, American Economic Association, vol. 104(5), pages 575-580, May.
    3. Leurent, Martin & Da Costa, Pascal & Rämä, Miika & Persson, Urban & Jasserand, Frédéric, 2018. "Cost-benefit analysis of district heating systems using heat from nuclear plants in seven European countries," Energy, Elsevier, vol. 149(C), pages 454-472.
    4. Mi Zhou & Hongxun Liu & Liqun Peng & Yue Qin & Dan Chen & Lin Zhang & Denise L. Mauzerall, 2022. "Environmental benefits and household costs of clean heating options in northern China," Nature Sustainability, Nature, vol. 5(4), pages 329-338, April.
    5. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    6. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    7. Hosier, Richard H. & Dowd, Jeffrey, 1987. "Household fuel choice in Zimbabwe : An empirical test of the energy ladder hypothesis," Resources and Energy, Elsevier, vol. 9(4), pages 347-361, December.
    8. Xie, Lunyu & Wei, Chu & Zheng, Xinye & Liu, Yang & Wu, Wanyi & Feng, Ziru, 2023. "Who benefits from household energy transition? A cost-benefit analysis based on household survey data in China," China Economic Review, Elsevier, vol. 77(C).
    9. Hsu, David, 2015. "Identifying key variables and interactions in statistical models of building energy consumption using regularization," Energy, Elsevier, vol. 83(C), pages 144-155.
    10. Masera, Omar R. & Saatkamp, Barbara D. & Kammen, Daniel M., 2000. "From Linear Fuel Switching to Multiple Cooking Strategies: A Critique and Alternative to the Energy Ladder Model," World Development, Elsevier, vol. 28(12), pages 2083-2103, December.
    11. Waite, Michael & Cohen, Elliot & Torbey, Henri & Piccirilli, Michael & Tian, Yu & Modi, Vijay, 2017. "Global trends in urban electricity demands for cooling and heating," Energy, Elsevier, vol. 127(C), pages 786-802.
    12. Paul J. Gertler & Orie Shelef & Catherine D. Wolfram & Alan Fuchs, 2016. "The Demand for Energy-Using Assets among the World's Rising Middle Classes," American Economic Review, American Economic Association, vol. 106(6), pages 1366-1401, June.
    13. Xie, Lunyu & Hu, Xian & Zhang, Xinyi & Zhang, Xiao-Bing, 2022. "Who suffers from energy poverty in household energy transition? Evidence from clean heating program in rural China," Energy Economics, Elsevier, vol. 106(C).
    14. Papke, Leslie E & Wooldridge, Jeffrey M, 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 619-632, Nov.-Dec..
    15. Saha, G.P. & Stephenson, J., 1980. "A model of residential energy use in New Zealand," Energy, Elsevier, vol. 5(2), pages 167-175.
    16. Xiong, Weiming & Wang, Yu & Mathiesen, Brian Vad & Lund, Henrik & Zhang, Xiliang, 2015. "Heat roadmap China: New heat strategy to reduce energy consumption towards 2030," Energy, Elsevier, vol. 81(C), pages 274-285.
    17. Xinye Zheng & Chu Wei (ed.), 2019. "Household Energy Consumption in China: 2016 Report," Springer Books, Springer, number 978-981-13-7523-1, October.
    18. Jing Lin & Boqiang Lin, 2016. "How Much CO 2 Emissions Can Be Reduced in China’s Heating Industry," Sustainability, MDPI, vol. 8(7), pages 1-16, July.
    19. Hu, Shan & Yan, Da & Cui, Ying & Guo, Siyue, 2016. "Urban residential heating in hot summer and cold winter zones of China—Status, modeling, and scenarios to 2030," Energy Policy, Elsevier, vol. 92(C), pages 158-170.
    20. Adrien Deroubaix & Inga Labuhn & Marie Camredon & Benjamin Gaubert & Paul-Arthur Monerie & Max Popp & Johanna Ramarohetra & Yohan Ruprich-Robert & Levi G. Silvers & Guillaume Siour, 2021. "Large uncertainties in trends of energy demand for heating and cooling under climate change," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    21. Ma, Sining & Guo, Siyue & Zheng, Dingqian & Chang, Shiyan & Zhang, Xiliang, 2021. "Roadmap towards clean and low carbon heating to 2035: A provincial analysis in northern China," Energy, Elsevier, vol. 225(C).
    22. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    23. Qiang Wang & Jie Fan & Mei-Po Kwan & Kan Zhou & Guofeng Shen & Na Li & Bowei Wu & Jian Lin, 2023. "Examining energy inequality under the rapid residential energy transition in China through household surveys," Nature Energy, Nature, vol. 8(3), pages 251-263, March.
    24. Nan Zhou & Nina Khanna & Wei Feng & Jing Ke & Mark Levine, 2018. "Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050," Nature Energy, Nature, vol. 3(11), pages 978-984, November.
    25. Janet L. Reyna & Mikhail V. Chester, 2017. "Energy efficiency to reduce residential electricity and natural gas use under climate change," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filippo Pavanello & Enrica Cian & Marinella Davide & Malcolm Mistry & Talita Cruz & Paula Bezerra & Dattakiran Jagu & Sebastian Renner & Roberto Schaeffer & André F. P. Lucena, 2021. "Air-conditioning and the adaptation cooling deficit in emerging economies," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    3. Jia, Jun-Jun & Ni, Jinlan & Wei, Chu, 2023. "Residential responses to service-specific electricity demand: Case of China," China Economic Review, Elsevier, vol. 78(C).
    4. Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
    5. Hannah Goozee, 2017. "Energy, poverty and development: a primer for the Sustainable Development Goals," Working Papers 156, International Policy Centre for Inclusive Growth.
    6. Yuanzheng Li & Wenjing Wang & Yating Wang & Yashu Xin & Tian He & Guosong Zhao, 2020. "A Review of Studies Involving the Effects of Climate Change on the Energy Consumption for Building Heating and Cooling," IJERPH, MDPI, vol. 18(1), pages 1-18, December.
    7. Yang, Yong & Østergaard, Poul Alberg & Wen, Wen & Zhou, Peng, 2024. "Heating transition in the hot summer and cold winter zone of China: District heating or individual heating?," Energy, Elsevier, vol. 290(C).
    8. Teng Ma & Silu Zhang & Yilong Xiao & Xiaorui Liu & Minghao Wang & Kai Wu & Guofeng Shen & Chen Huang & Yan Ru Fang & Yang Xie, 2023. "Costs and health benefits of the rural energy transition to carbon neutrality in China," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. McCoy, Daire & Curtis, John, 2018. "Exploring the spatial and temporal determinants of gas central heating adoption," Resource and Energy Economics, Elsevier, vol. 52(C), pages 64-86.
    10. Xiaoyang Hou & Shuai Zhong & Jian’an Zhao, 2022. "A Critical Review on Decarbonizing Heating in China: Pathway Exploration for Technology with Multi-Sector Applications," Energies, MDPI, vol. 15(3), pages 1-23, February.
    11. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    12. Castillo, Victhalia Zapata & Boer, Harmen-Sytze de & Muñoz, Raúl Maícas & Gernaat, David E.H.J. & Benders, René & van Vuuren, Detlef, 2022. "Future global electricity demand load curves," Energy, Elsevier, vol. 258(C).
    13. Chen, Si-Yuan & Xue, Meng-Tian & Wang, Zhao-Hua & Tian, Xin & Zhang, Bin, 2022. "Exploring pathways of phasing out clean heating subsidies for rural residential buildings in China," Energy Economics, Elsevier, vol. 116(C).
    14. Ma, Meiyan & Tang, Xu & Shi, Changning & Wang, Min & Li, Xinying & Luo, Pengfei & Zhang, Baosheng, 2023. "Roadmap towards clean and low-carbon heating to 2060: The case of northern urban region in China," Energy, Elsevier, vol. 284(C).
    15. Chang Su & Frauke Urban, 2021. "Carbon Neutral China by 2060: The Role of Clean Heating Systems," Energies, MDPI, vol. 14(22), pages 1-16, November.
    16. Savvidou, Georgia & Nykvist, Björn, 2020. "Heat demand in the Swedish residential building stock - pathways on demand reduction potential based on socio-technical analysis," Energy Policy, Elsevier, vol. 144(C).
    17. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Li, Yating & Fei, Yinxin & Zhang, Xiao-Bing & Qin, Ping, 2019. "Household appliance ownership and income inequality: Evidence from micro data in China," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    19. Wei Yu & Baizhan Li & Yarong Lei & Meng Liu, 2011. "Analysis of a Residential Building Energy Consumption Demand Model," Energies, MDPI, vol. 4(3), pages 1-13, March.
    20. Ahmed Moustapha Mfokeu & Elie Virgile Chrysostome & Jean-Pierre Gueyie & Olivier Ebenezer Mun Ngapna, 2023. "Consumer Motivation behind the Use of Ecological Charcoal in Cameroon," Sustainability, MDPI, vol. 15(3), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:190:y:2024:i:c:s0301421524001617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.