IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3513-d574256.html
   My bibliography  Save this article

Development and Application of Schema Based Occupant-Centric Building Performance Metrics

Author

Listed:
  • Cory Mosiman

    (Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
    WSP USA, New York, NY 10119, USA)

  • Gregor Henze

    (Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
    National Renewable Energy Laboratory, Golden, CO 80401, USA
    Renewable and Sustainable Energy Institute, Boulder, CO 80309, USA)

  • Herbert Els

    (WSP USA, New York, NY 10119, USA)

Abstract

Occupant behavior can significantly influence the operation and performance of buildings. Many occupant-centric key performance indicators (KPIs) rely on having accurate counts of the number of occupants in a building, which is very different to how occupancy information is currently collected in the majority of buildings today. To address this gap, the authors develop a standardized methodology for the calculation of percent space utilization for buildings, which is formulated with respect to two prevalent operational data schemas: the Brick Schema and Project Haystack. The methodology is scalable across different levels of spatial granularity and irrespective of sensor placement. Moreover, the methods are intended to make use of typical occupancy sensors that capture presence level occupancy and not counts of people. Since occupant-hours is a preferable metric to use in KPI calculations, a method to convert between percent space utilization and occupant-hours using the design occupancy for a space is also developed. The methodology is demonstrated on a small commercial office space in Boulder, Colorado using data collected between June 2018 and February 2019. A multiple linear regression is performed that shows strong evidence for a relationship between building energy consumption and percent space utilization.

Suggested Citation

  • Cory Mosiman & Gregor Henze & Herbert Els, 2021. "Development and Application of Schema Based Occupant-Centric Building Performance Metrics," Energies, MDPI, vol. 14(12), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3513-:d:574256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3513/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3513/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aapo Huovila & Pekka Tuominen & Miimu Airaksinen, 2017. "Effects of Building Occupancy on Indicators of Energy Efficiency," Energies, MDPI, vol. 10(5), pages 1-19, May.
    2. Granderson, Jessica & Touzani, Samir & Custodio, Claudine & Sohn, Michael D. & Jump, David & Fernandes, Samuel, 2016. "Accuracy of automated measurement and verification (M&V) techniques for energy savings in commercial buildings," Applied Energy, Elsevier, vol. 173(C), pages 296-308.
    3. Marco Pritoni & Drew Paine & Gabriel Fierro & Cory Mosiman & Michael Poplawski & Avijit Saha & Joel Bender & Jessica Granderson, 2021. "Metadata Schemas and Ontologies for Building Energy Applications: A Critical Review and Use Case Analysis," Energies, MDPI, vol. 14(7), pages 1-37, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    2. Fu, Chun & Miller, Clayton, 2022. "Using Google Trends as a proxy for occupant behavior to predict building energy consumption," Applied Energy, Elsevier, vol. 310(C).
    3. Jakob Carlander & Bahram Moshfegh & Jan Akander & Fredrik Karlsson, 2020. "Effects on Energy Demand in an Office Building Considering Location, Orientation, Façade Design and Internal Heat Gains—A Parametric Study," Energies, MDPI, vol. 13(23), pages 1-22, November.
    4. Ke, Ming-Tsun & Yeh, Chia-Hung & Su, Cheng-Jie, 2017. "Cloud computing platform for real-time measurement and verification of energy performance," Applied Energy, Elsevier, vol. 188(C), pages 497-507.
    5. Filippos Lygerakis & Nikos Kampelis & Dionysia Kolokotsa, 2022. "Knowledge Graphs’ Ontologies and Applications for Energy Efficiency in Buildings: A Review," Energies, MDPI, vol. 15(20), pages 1-32, October.
    6. Grillone, Benedetto & Mor, Gerard & Danov, Stoyan & Cipriano, Jordi & Sumper, Andreas, 2021. "A data-driven methodology for enhanced measurement and verification of energy efficiency savings in commercial buildings," Applied Energy, Elsevier, vol. 301(C).
    7. Herman Carstens & Xiaohua Xia & Sarma Yadavalli, 2018. "Bayesian Energy Measurement and Verification Analysis," Energies, MDPI, vol. 11(2), pages 1-20, February.
    8. Töppel, Jannick & Tränkler, Timm, 2019. "Modeling energy efficiency insurances and energy performance contracts for a quantitative comparison of risk mitigation potential," Energy Economics, Elsevier, vol. 80(C), pages 842-859.
    9. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    10. Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2017. "Low-cost energy meter calibration method for measurement and verification," Applied Energy, Elsevier, vol. 188(C), pages 563-575.
    11. Abdurahman Alrobaie & Moncef Krarti, 2022. "A Review of Data-Driven Approaches for Measurement and Verification Analysis of Building Energy Retrofits," Energies, MDPI, vol. 15(21), pages 1-30, October.
    12. Ru-Guan Wang & Wen-Jen Ho & Kuei-Chun Chiang & Yung-Chieh Hung & Jen-Kuo Tai & Jia-Cheng Tan & Mei-Ling Chuang & Chi-Yun Ke & Yi-Fan Chien & An-Ping Jeng & Chien-Cheng Chou, 2023. "Analyzing Long-Term and High Instantaneous Power Consumption of Buildings from Smart Meter Big Data with Deep Learning and Knowledge Graph Techniques," Energies, MDPI, vol. 16(19), pages 1-24, September.
    13. Jeong, Cheoljoon & Byon, Eunshin, 2024. "Calibration of building energy computer models via bias-corrected iteratively reweighted least squares method," Applied Energy, Elsevier, vol. 360(C).
    14. Yimin Chen & Guanjing Lin & Eliot Crowe & Jessica Granderson, 2021. "Development of a Unified Taxonomy for HVAC System Faults," Energies, MDPI, vol. 14(17), pages 1-25, September.
    15. Jeong Soo Shin & Jong Woo Park & Sean Hay Kim, 2020. "Measurement and Verification of Integrated Ground Source Heat Pumps on a Shared Ground Loop," Energies, MDPI, vol. 13(7), pages 1-24, April.
    16. Granderson, Jessica & Fernandes, Samuel & Touzani, Samir & Lee, Chih-Cheng & Crowe, Eliot & Sheridan, Margaret, 2020. "Spatio-temporal impacts of a utility’s efficiency portfolio on the distribution grid," Energy, Elsevier, vol. 212(C).
    17. Grillone, Benedetto & Danov, Stoyan & Sumper, Andreas & Cipriano, Jordi & Mor, Gerard, 2020. "A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. Baltuttis, Dennik & Töppel, Jannick & Tränkler, Timm & Wiethe, Christian, 2020. "Managing the risks of energy efficiency insurances in a portfolio context: An actuarial diversification approach," International Review of Financial Analysis, Elsevier, vol. 68(C).
    19. Zhiyu Pan & Guanchen Pan & Antonello Monti, 2022. "Semantic-Similarity-Based Schema Matching for Management of Building Energy Data," Energies, MDPI, vol. 15(23), pages 1-23, November.
    20. Khan Rahmat Ullah & Marudhappan Thirugnanasambandam & Rahman Saidur & Kazi Akikur Rahman & Md. Riaz Kayser, 2021. "Analysis of Energy Use and Energy Savings: A Case Study of a Condiment Industry in India," Energies, MDPI, vol. 14(16), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3513-:d:574256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.