IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v168y2016icp534-543.html
   My bibliography  Save this article

Micro-Solid Oxide Fuel Cell: A multi-fuel approach for portable applications

Author

Listed:
  • Patil, Tarkeshwar C.
  • Duttagupta, Siddhartha P.

Abstract

The impact of oxygen ion transport at the electrolyte–electrode interface of a micro-solid oxide fuel cell using different fuels is investigated. Model validation is performed to verify the results versus the reported values. Furthermore, as the hydrogen-to-carbon ratio decreases, the diffusivity of the oxygen ion increases. This increase in diffusivity is observed because the number of hydrogen atoms available as the reacting species increases in fuels with lower hydrogen-to-carbon ratios. The oxygen ion conductivity and output power density decrease as the hydrogen-to-carbon ratio of the fuels decreases. The reason behind this impact is the formation of a gas-induced ion barrier at the electrode–electrolyte interface by the CO2 molecules formed during the reaction at the interface, thus blocking the flow of oxygen ions. As the oxygen ions become blocked, the output current contribution from the reaction also decreases and thereby affects the overall performance of the micro-solid oxide fuel cell. The experimental verification confirms this because of a significant decrease in the output power density. Furthermore, as per the application in portable devices, the appropriate choice of fuel can be chosen so that the micro-solid oxide fuel cell operates at the maximum power density.

Suggested Citation

  • Patil, Tarkeshwar C. & Duttagupta, Siddhartha P., 2016. "Micro-Solid Oxide Fuel Cell: A multi-fuel approach for portable applications," Applied Energy, Elsevier, vol. 168(C), pages 534-543.
  • Handle: RePEc:eee:appene:v:168:y:2016:i:c:p:534-543
    DOI: 10.1016/j.apenergy.2016.01.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191630099X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.01.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cinti, Giovanni & Desideri, Umberto, 2015. "SOFC fuelled with reformed urea," Applied Energy, Elsevier, vol. 154(C), pages 242-253.
    2. Navasa, Maria & Yuan, Jinliang & Sundén, Bengt, 2015. "Computational fluid dynamics approach for performance evaluation of a solid oxide electrolysis cell for hydrogen production," Applied Energy, Elsevier, vol. 137(C), pages 867-876.
    3. Andersson, Martin & Yuan, Jinliang & Sundén, Bengt, 2010. "Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells," Applied Energy, Elsevier, vol. 87(5), pages 1461-1476, May.
    4. Zhu, Bin & Fan, Liangdong & Lund, Peter, 2013. "Breakthrough fuel cell technology using ceria-based multi-functional nanocomposites," Applied Energy, Elsevier, vol. 106(C), pages 163-175.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharifzadeh, Mahdi & Meghdari, Mojtaba & Rashtchian, Davood, 2017. "Multi-objective design and operation of Solid Oxide Fuel Cell (SOFC) Triple Combined-cycle Power Generation systems: Integrating energy efficiency and operational safety," Applied Energy, Elsevier, vol. 185(P1), pages 345-361.
    2. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    3. Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
    4. Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Zhen Zhang & Chengzhi Guan & Leidong Xie & Jian-Qiang Wang, 2022. "Design and Analysis of a Novel Opposite Trapezoidal Flow Channel for Solid Oxide Electrolysis Cell Stack," Energies, MDPI, vol. 16(1), pages 1-11, December.
    6. Xing, Xuetao & Lin, Jin & Song, Yonghua & Hu, Qiang & Zhou, You & Mu, Shujun, 2018. "Optimization of hydrogen yield of a high-temperature electrolysis system with coordinated temperature and feed factors at various loading conditions: A model-based study," Applied Energy, Elsevier, vol. 232(C), pages 368-385.
    7. Rashid, Kashif & Dong, Sang Keun & Mehran, Muhammad Taqi & Lee, Dong Won, 2017. "Design and analysis of compact hotbox for solid oxide fuel cell based 1kW-class power generation system," Applied Energy, Elsevier, vol. 208(C), pages 620-636.
    8. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2021. "Techno-economic comparison of 100% renewable urea production processes," Applied Energy, Elsevier, vol. 284(C).
    9. Youchan Kim & Kisung Lim & Hassan Salihi & Seongku Heo & Hyunchul Ju, 2023. "The Effects of Stack Configurations on the Thermal Management Capabilities of Solid Oxide Electrolysis Cells," Energies, MDPI, vol. 17(1), pages 1-20, December.
    10. Bargiacchi, Eleonora & Antonelli, Marco & Desideri, Umberto, 2019. "A comparative assessment of Power-to-Fuel production pathways," Energy, Elsevier, vol. 183(C), pages 1253-1265.
    11. Yan, Dong & Zhang, Chi & Liang, Linjiang & Li, Kai & Jia, Lichao & Pu, Jian & Jian, Li & Li, Xi & Zhang, Tao, 2016. "Degradation analysis and durability improvement for SOFC 1-cell stack," Applied Energy, Elsevier, vol. 175(C), pages 414-420.
    12. Ferrari, Mario L. & Pascenti, Matteo & Traverso, Alberto N. & Massardo, Aristide F., 2012. "Hybrid system test rig: Chemical composition emulation with steam injection," Applied Energy, Elsevier, vol. 97(C), pages 809-815.
    13. Lee, Sanghyeok & Park, Mansoo & Kim, Hyoungchul & Yoon, Kyung Joong & Son, Ji-Won & Lee, Jong-Ho & Kim, Byung-Kook & Choi, Wonjoon & Hong, Jongsup, 2017. "Thermal conditions and heat transfer characteristics of high-temperature solid oxide fuel cells investigated by three-dimensional numerical simulations," Energy, Elsevier, vol. 120(C), pages 293-305.
    14. Zhu, Wenhua H. & Zhu, Ying & Davis, Zenda & Tatarchuk, Bruce J., 2013. "Energy efficiency and capacity retention of Ni–MH batteries for storage applications," Applied Energy, Elsevier, vol. 106(C), pages 307-313.
    15. Hashemi, Rohallah & Nassar, Nashaat N. & Pereira Almao, Pedro, 2014. "Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges," Applied Energy, Elsevier, vol. 133(C), pages 374-387.
    16. Xenos, Dionysios P. & Hofmann, Philipp & Panopoulos, Kyriakos D. & Kakaras, Emmanuel, 2015. "Detailed transient thermal simulation of a planar SOFC (solid oxide fuel cell) using gPROMS™," Energy, Elsevier, vol. 81(C), pages 84-102.
    17. Wei Kong & Qiang Zhang & Xiuwen Xu & Daifen Chen, 2015. "A Simple Expression for the Tortuosity of Gas Transport Paths in Solid Oxide Fuel Cells’ Porous Electrodes," Energies, MDPI, vol. 8(12), pages 1-7, December.
    18. Hussein, Ahmed Kadhim, 2015. "Applications of nanotechnology in renewable energies—A comprehensive overview and understanding," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 460-476.
    19. Sriram Srinivas & Shankar Raman Dhanushkodi & Ramesh Kumar Chidambaram & Dorota Skrzyniowska & Anna Korzen & Jan Taler, 2023. "Benchmarking Electrolytes for the Solid Oxide Electrolyzer Using a Finite Element Model," Energies, MDPI, vol. 16(18), pages 1-15, September.
    20. Subotić, Vanja & Stoeckl, Bernhard & Lawlor, Vincent & Strasser, Johannes & Schroettner, Hartmuth & Hochenauer, Christoph, 2018. "Towards a practical tool for online monitoring of solid oxide fuel cell operation: An experimental study and application of advanced data analysis approaches," Applied Energy, Elsevier, vol. 222(C), pages 748-761.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:168:y:2016:i:c:p:534-543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.