IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i5p1461-1476.html
   My bibliography  Save this article

Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells

Author

Listed:
  • Andersson, Martin
  • Yuan, Jinliang
  • Sundén, Bengt

Abstract

A literature study is performed to compile the state-of-the-art, as well as future potential, in SOFC modeling. Principles behind various transport processes such as mass, heat, momentum and charge as well as for electrochemical and internal reforming reactions are described. A deeper investigation is made to find out potentials and challenges using a multiscale approach to model solid oxide fuel cells (SOFCs) and combine the accuracy at microscale with the calculation speed at macroscale to design SOFCs, based on a clear understanding of transport phenomena, chemical reactions and functional requirements. Suitable methods are studied to model SOFCs covering various length scales. Coupling methods between different approaches and length scales by multiscale models are outlined. Multiscale modeling increases the understanding for detailed transport phenomena, and can be used to make a correct decision on the specific design and control of operating conditions. It is expected that the development and production costs will be decreased and the energy efficiency be increased (reducing running cost) as the understanding of complex physical phenomena increases. It is concluded that the connection between numerical modeling and experiments is too rare and also that material parameters in most cases are valid only for standard materials and not for the actual SOFC component microstructures.

Suggested Citation

  • Andersson, Martin & Yuan, Jinliang & Sundén, Bengt, 2010. "Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells," Applied Energy, Elsevier, vol. 87(5), pages 1461-1476, May.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:5:p:1461-1476
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00500-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Calise, F. & Ferruzzi, G. & Vanoli, L., 2009. "Parametric exergy analysis of a tubular Solid Oxide Fuel Cell (SOFC) stack through finite-volume model," Applied Energy, Elsevier, vol. 86(11), pages 2401-2410, November.
    2. Santin, Marco & Traverso, Alberto & Magistri, Loredana, 2009. "Liquid fuel utilization in SOFC hybrid systems," Applied Energy, Elsevier, vol. 86(10), pages 2204-2212, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.
    2. Yan, Min & Zeng, Min & Chen, Qiuyang & Wang, Qiuwang, 2012. "Numerical study on carbon deposition of SOFC with unsteady state variation of porosity," Applied Energy, Elsevier, vol. 97(C), pages 754-762.
    3. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    4. Jiang, Yidong & Gu, Xin & Shi, Jixin & Shi, Yixiang & Cai, Ningsheng, 2023. "Co-generation of gas and electricity on liquid antimony anode solid oxide fuel cells for high efficiency, long-term kerosene power generation," Energy, Elsevier, vol. 263(PC).
    5. Ortiz-Vitoriano, N. & Bernuy-López, C. & Ruiz de Larramendi, I. & Knibbe, R. & Thydén, K. & Hauch, A. & Holtappels, P. & Rojo, T., 2013. "Optimizing solid oxide fuel cell cathode processing route for intermediate temperature operation," Applied Energy, Elsevier, vol. 104(C), pages 984-991.
    6. Barelli, L. & Bidini, G. & Ottaviano, A., 2017. "Integration of SOFC/GT hybrid systems in Micro-Grids," Energy, Elsevier, vol. 118(C), pages 716-728.
    7. Harun, Nor Farida & Tucker, David & Adams, Thomas A., 2016. "Impact of fuel composition transients on SOFC performance in gas turbine hybrid systems," Applied Energy, Elsevier, vol. 164(C), pages 446-461.
    8. Wee, Jung-Ho, 2011. "Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources," Applied Energy, Elsevier, vol. 88(12), pages 4252-4263.
    9. Hu, Boxun & Keane, Michael & Patil, Kailash & Mahapatra, Manoj K. & Pasaogullari, Ugur & Singh, Prabhakar, 2014. "Direct methanol utilization in intermediate temperature liquid-tin anode solid oxide fuel cells," Applied Energy, Elsevier, vol. 134(C), pages 342-348.
    10. Ferrari, Mario L. & Pascenti, Matteo & Traverso, Alberto N. & Massardo, Aristide F., 2012. "Hybrid system test rig: Chemical composition emulation with steam injection," Applied Energy, Elsevier, vol. 97(C), pages 809-815.
    11. Barelli, L. & Bidini, G. & Ottaviano, A., 2013. "Part load operation of a SOFC/GT hybrid system: Dynamic analysis," Applied Energy, Elsevier, vol. 110(C), pages 173-189.
    12. Zaccaria, V. & Tucker, D. & Traverso, A., 2016. "Transfer function development for SOFC/GT hybrid systems control using cold air bypass," Applied Energy, Elsevier, vol. 165(C), pages 695-706.
    13. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    14. Chen, Hao & Yang, Chen & Zhou, Nana & Farida Harun, Nor & Oryshchyn, Danylo & Tucker, David, 2020. "High efficiencies with low fuel utilization and thermally integrated fuel reforming in a hybrid solid oxide fuel cell gas turbine system," Applied Energy, Elsevier, vol. 272(C).
    15. Pavelka, Michal & Klika, Václav & Vágner, Petr & Maršík, František, 2015. "Generalization of exergy analysis," Applied Energy, Elsevier, vol. 137(C), pages 158-172.
    16. Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
    17. Galanti, Leandro & Massardo, Aristide F., 2011. "Micro gas turbine thermodynamic and economic analysis up to 500kWe size," Applied Energy, Elsevier, vol. 88(12), pages 4795-4802.
    18. Azizi, Mohammad Ali & Brouwer, Jacob & Dunn-Rankin, Derek, 2016. "Analytical investigation of high temperature 1kW solid oxide fuel cell system feasibility in methane hydrate recovery and deep ocean power generation," Applied Energy, Elsevier, vol. 179(C), pages 909-928.
    19. Razbani, Omid & Wærnhus, Ivar & Assadi, Mohsen, 2013. "Experimental investigation of temperature distribution over a planar solid oxide fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 155-160.
    20. Díaz-de-Baldasano, Maria C. & Mateos, Francisco J. & Núñez-Rivas, Luis R. & Leo, Teresa J., 2014. "Conceptual design of offshore platform supply vessel based on hybrid diesel generator-fuel cell power plant," Applied Energy, Elsevier, vol. 116(C), pages 91-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:5:p:1461-1476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.