IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p125-d1307298.html
   My bibliography  Save this article

The Effects of Stack Configurations on the Thermal Management Capabilities of Solid Oxide Electrolysis Cells

Author

Listed:
  • Youchan Kim

    (Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Republic of Korea)

  • Kisung Lim

    (Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Republic of Korea)

  • Hassan Salihi

    (Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Republic of Korea)

  • Seongku Heo

    (Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Republic of Korea)

  • Hyunchul Ju

    (Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Republic of Korea)

Abstract

In this study, we analyze the impacts of various stack configurations of a solid oxide electrolysis cell (SOEC) that includes U-type and Z-type stack structures as well as co-flow and counter-flow configurations. The primary focus of this study is to analyze the impact of these SOEC stack configurations on the temperature distribution within the stack and the temperature variations of key components. Furthermore, by predicting the thermal stress and thermal deformation of individual SOEC components, the study can provide design guidelines for enhancing the durability of the SOEC stack. Among various SOEC stack configurations, the counter-flow design outperformed others in temperature uniformity and component temperature variation. The Z-type stack structure slightly surpassed the U-type in flow uniformity, while both had a minimal influence on thermal management. Besides conventional flow-field configurations, such as the parallel flow field, we introduce a metal-foam-based flow-field design and analyze the effects of using metal foam to ensure flow uniformity within the stack and achieve temperature uniformity. The metal foam design has a lower average temperature (2–5 °C) and ∆T (4–7 °C) compared to the parallel flow field in each cell, but this improvement is accompanied by a substantial pressure-drop: 2359.3 Pa for vapor flow (11.7 times higher) and 4409.0 Pa for air flow (4.6 times higher). Additionally, structural analysis was performed using CFD temperature data. The co-flow configuration induced higher thermal stress at the front of the stack, whereas the counter-flow configuration mitigated thermal stress in the front cells. The metal foam structure consistently demonstrated a reduction in thermal stress across all cells by about 1 MPa, highlighting its potential to alleviate thermal stress in SOEC stacks. This study presents a novel CFD analysis approach for a 10-cell SOEC stack, enabling the development of an optimized stack design with improved heat and flow distribution. The integrated CFD–FEM analysis provides reliable thermal stress data that elucidates the correlation between temperature and stress distributions within the stack.

Suggested Citation

  • Youchan Kim & Kisung Lim & Hassan Salihi & Seongku Heo & Hyunchul Ju, 2023. "The Effects of Stack Configurations on the Thermal Management Capabilities of Solid Oxide Electrolysis Cells," Energies, MDPI, vol. 17(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:125-:d:1307298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    2. Navasa, Maria & Yuan, Jinliang & Sundén, Bengt, 2015. "Computational fluid dynamics approach for performance evaluation of a solid oxide electrolysis cell for hydrogen production," Applied Energy, Elsevier, vol. 137(C), pages 867-876.
    3. Min, Gyubin & Choi, Saeyoung & Hong, Jongsup, 2022. "A review of solid oxide steam-electrolysis cell systems: Thermodynamics and thermal integration," Applied Energy, Elsevier, vol. 328(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Peiyang & Chi, Yingtian & Lin, Jin & Mu, Shujun & Song, Yonghua, 2024. "Inhomogeneity influence on the maximum current density of an SOEC stack tower: A circuit-based perspective," Applied Energy, Elsevier, vol. 375(C).
    2. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    3. Hugo Gaspar Hernandez-Palma & Dairo J. Novoa & Jorge Enrique Taboada à lvarez, 2024. "New Trends in Green Projects Aimed at Clean Energy: An Analysis of the Scientific Literature," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 278-286, November.
    4. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Meng, Qiaorong & Wang, Lei & Lu, Yang, 2023. "Thermal maturity and chemical structure evolution of lump long-flame coal during superheated water vapor–based in situ pyrolysis," Energy, Elsevier, vol. 263(PC).
    5. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    6. Elfarra, Barakat & Yasmeen, Rizwana & Shah, Wasi Ul Hassan, 2024. "The impact of energy security, energy mix, technological advancement, trade openness, and political stability on energy efficiency: Evidence from Arab countries," Energy, Elsevier, vol. 295(C).
    7. Wu, Chenxi & Zhu, Qunzhi & Dou, Binlin & Fu, Zaiguo & Wang, Jikai & Mao, Siqi, 2024. "Thermodynamic analysis of a solid oxide electrolysis cell system in thermoneutral mode integrated with industrial waste heat for hydrogen production," Energy, Elsevier, vol. 301(C).
    8. Hagreaves Kumba & Oludolapo A. Olanrewaju & Ratidzo Pasipamire, 2024. "Integration of Renewable Energy Technologies for Sustainable Development in South Africa: A Focus on Grid-Connected PV Systems," Energies, MDPI, vol. 17(12), pages 1-22, June.
    9. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Bernardas Vaznonis & Gunta Grīnberga-Zālīte, 2023. "The Relationship between Energy Consumption and Economic Growth in the Baltic Countries’ Agriculture: A Non-Linear Framework," Energies, MDPI, vol. 16(5), pages 1-22, February.
    10. Liang, Zhaojian & Chen, Shanlin & Ni, Meng & Wang, Jingyi & Li, Mengying, 2024. "A novel control strategy to neutralize internal heat source within solid oxide electrolysis cell (SOEC) under variable solar power conditions," Applied Energy, Elsevier, vol. 371(C).
    11. Junqiu Fan & Jing Zhang & Long Yuan & Rujing Yan & Yu He & Weixing Zhao & Nang Nin, 2024. "Deep Low-Carbon Economic Optimization Using CCUS and Two-Stage P2G with Multiple Hydrogen Utilizations for an Integrated Energy System with a High Penetration Level of Renewables," Sustainability, MDPI, vol. 16(13), pages 1-20, July.
    12. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Alexander Prosekov & Olga Kriger & Vyacheslav Dolganyuk, 2022. "Bioengineering and Molecular Biology of Miscanthus," Energies, MDPI, vol. 15(14), pages 1-14, July.
    13. Asif Raihan & Sadman Anjum Joarder & Tapan Sarker & Blanka Gosik & Dariusz Kusz & Grzegorz Zimon, 2024. "Renewable Energy in Nepal: Current State and Future Outlook," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 395-407, November.
    14. Sinha, Shruti & Sankar Rao, Chinta & Kumar, Abhishankar & Venkata Surya, Dadi & Basak, Tanmay, 2024. "Exploring and understanding the microwave-assisted pyrolysis of waste lignocellulose biomass using gradient boosting regression machine learning model," Renewable Energy, Elsevier, vol. 231(C).
    15. Simona Domazetovska & Vladimir Strezov & Risto V. Filkoski & Tao Kan, 2023. "Exploring the Potential of Biomass Pyrolysis for Renewable and Sustainable Energy Production: A Comparative Study of Corn Cob, Vine Rod, and Sunflower," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    16. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    17. Grzegorz Pełka & Marta Jach-Nocoń & Marcin Paprocki & Artur Jachimowski & Wojciech Luboń & Adam Nocoń & Mateusz Wygoda & Paweł Wyczesany & Przemysław Pachytel & Tomasz Mirowski, 2023. "Comparison of Emissions and Efficiency of Two Types of Burners When Burning Wood Pellets from Different Suppliers," Energies, MDPI, vol. 16(4), pages 1-18, February.
    18. Serigne Abdoul Aziz Niang & Abdoulaye Cisse & Mamadou Simina Dramé & Ismaila Diallo & Arona Diedhiou & Seydina Oumar Ndiaye & Kharouna Talla & Alle Dioum & Yorou Tchakondo, 2024. "A Tale of Sustainable Energy Transition Under New Fossil Fuel Discoveries: The Case of Senegal (West Africa)," Sustainability, MDPI, vol. 16(23), pages 1-22, December.
    19. Zhen Zhang & Chengzhi Guan & Leidong Xie & Jian-Qiang Wang, 2022. "Design and Analysis of a Novel Opposite Trapezoidal Flow Channel for Solid Oxide Electrolysis Cell Stack," Energies, MDPI, vol. 16(1), pages 1-11, December.
    20. Obu Samson Showers & Sunetra Chowdhury, 2024. "Enhancing Energy Supply Reliability for University Lecture Halls Using Photovoltaic-Battery Microgrids: A South African Case Study," Energies, MDPI, vol. 17(13), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:125-:d:1307298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.