IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i12p12406-13959d60268.html
   My bibliography  Save this article

A Simple Expression for the Tortuosity of Gas Transport Paths in Solid Oxide Fuel Cells’ Porous Electrodes

Author

Listed:
  • Wei Kong

    (School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
    These authors contributed equally to this work.)

  • Qiang Zhang

    (School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
    These authors contributed equally to this work.)

  • Xiuwen Xu

    (School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
    These authors contributed equally to this work.)

  • Daifen Chen

    (School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
    These authors contributed equally to this work.)

Abstract

Based on the three-dimensional (3D) cube packing model, a simple expression for the tortuosity of gas transport paths in solid oxide fuel cells’ (SOFC) porous electrodes is developed. The proposed tortuosity expression reveals the dependence of the tortuosity on porosity, which is capable of providing results that are very consistent with the experimental data in the practical porosity range of SOFC. Furthermore, for the high porosity (>0.6), the proposed tortuosity expression is also accurate. This might be helpful for understanding the physical mechanism for the tortuosity of gas transport paths in electrodes and the optimization electrode microstructure for reducing the concentration polarization.

Suggested Citation

  • Wei Kong & Qiang Zhang & Xiuwen Xu & Daifen Chen, 2015. "A Simple Expression for the Tortuosity of Gas Transport Paths in Solid Oxide Fuel Cells’ Porous Electrodes," Energies, MDPI, vol. 8(12), pages 1-7, December.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:12:p:12406-13959:d:60268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/12/12406/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/12/12406/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhonggang Zhang & Jingfeng Chen & Danting Yue & Guogang Yang & Shuang Ye & Changrong He & Weiguo Wang & Jinliang Yuan & Naibao Huang, 2013. "Three-Dimensional CFD Modeling of Transport Phenomena in a Cross-Flow Anode-Supported Planar SOFC," Energies, MDPI, vol. 7(1), pages 1-19, December.
    2. Wei Kong & Xiang Gao & Shixue Liu & Shichuan Su & Daifen Chen, 2014. "Optimization of the Interconnect Ribs for a Cathode-Supported Solid Oxide Fuel Cell," Energies, MDPI, vol. 7(1), pages 1-19, January.
    3. Andersson, Martin & Yuan, Jinliang & Sundén, Bengt, 2010. "Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells," Applied Energy, Elsevier, vol. 87(5), pages 1461-1476, May.
    4. Min Yan & Pei Fu & Qiuyang Chen & Qiuwang Wang & Min Zeng & Jaideep Pandit, 2014. "Electrical Performance and Carbon Deposition Differences between the Bi-Layer Interconnector and Conventional Straight Interconnector Solid Oxide Fuel Cell," Energies, MDPI, vol. 7(7), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daifen Chen & Biao Hu & Kai Ding & Cheng Yan & Liu Lu, 2018. "The Geometry Effect of Cathode/Anode Areas Ratio on Electrochemical Performance of Button Fuel Cell Using Mixed Conducting Materials," Energies, MDPI, vol. 11(7), pages 1-16, July.
    2. Espinoza-Andaluz, Mayken & Velasco-Galarza, Víctor & Romero-Vera, Alex, 2020. "On hydraulic tortuosity variations due to morphological considerations in 2D porous media by using the Lattice Boltzmann method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 169(C), pages 74-87.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Yan & Pei Fu & Qiuyang Chen & Qiuwang Wang & Min Zeng & Jaideep Pandit, 2014. "Electrical Performance and Carbon Deposition Differences between the Bi-Layer Interconnector and Conventional Straight Interconnector Solid Oxide Fuel Cell," Energies, MDPI, vol. 7(7), pages 1-13, July.
    2. Terracciano, Anthony Carmine & Vasu, Subith S. & Orlovskaya, Nina, 2016. "Design and development of a porous heterogeneous combustor for efficient heat production by combustion of liquid and gaseous fuels," Applied Energy, Elsevier, vol. 179(C), pages 228-236.
    3. Pavelka, Michal & Klika, Václav & Vágner, Petr & Maršík, František, 2015. "Generalization of exergy analysis," Applied Energy, Elsevier, vol. 137(C), pages 158-172.
    4. Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
    5. Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.
    6. He, Zhongjie & Birgersson, E. & Li, Hua, 2014. "Reduced non-isothermal model for the planar solid oxide fuel cell and stack," Energy, Elsevier, vol. 70(C), pages 478-492.
    7. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    8. Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
    9. Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Wang, Baoxuan & Zhu, Jiang & Lin, Zijing, 2016. "A theoretical framework for multiphysics modeling of methane fueled solid oxide fuel cell and analysis of low steam methane reforming kinetics," Applied Energy, Elsevier, vol. 176(C), pages 1-11.
    11. Paola Costamagna & Simone Grosso & Rowland Travis & Loredana Magistri, 2015. "Integrated Planar Solid Oxide Fuel Cell: Steady-State Model of a Bundle and Validation through Single Tube Experimental Data," Energies, MDPI, vol. 8(11), pages 1-24, November.
    12. Komatsu, Y. & Brus, G. & Kimijima, S. & Szmyd, J.S., 2014. "The effect of overpotentials on the transient response of the 300W SOFC cell stack voltage," Applied Energy, Elsevier, vol. 115(C), pages 352-359.
    13. Razbani, Omid & Wærnhus, Ivar & Assadi, Mohsen, 2013. "Experimental investigation of temperature distribution over a planar solid oxide fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 155-160.
    14. Chaoyu Liang & Chao Yang & Jiatang Wang & Peijian Lin & Xinke Li & Xuyang Wu & Jinliang Yuan, 2020. "Sintering Process and Effects on LST and LST-GDC Particles Simulated by Molecular Dynamics Modeling Method," Energies, MDPI, vol. 13(16), pages 1-18, August.
    15. Silva-Mosqueda, Dulce María & Elizalde-Blancas, Francisco & Pumiglia, Davide & Santoni, Francesca & Boigues-Muñoz, Carlos & McPhail, Stephen J., 2019. "Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance," Applied Energy, Elsevier, vol. 235(C), pages 625-640.
    16. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    17. Li, Zheng & Zhang, Hao & Xu, Haoran & Xuan, Jin, 2021. "Advancing the multiscale understanding on solid oxide electrolysis cells via modelling approaches: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    18. Nelson Thambiraj & Ivar Waernhus & Crina Suciu & Arild Vik & Alex C. Hoffmann, 2020. "Single-Cell Tests to Explore the Reliability of Sofc Installations Operating Offshore," Energies, MDPI, vol. 13(7), pages 1-19, April.
    19. Rashid, Kashif & Dong, Sang Keun & Mehran, Muhammad Taqi & Lee, Dong Won, 2017. "Design and analysis of compact hotbox for solid oxide fuel cell based 1kW-class power generation system," Applied Energy, Elsevier, vol. 208(C), pages 620-636.
    20. Fu, Quanrong & Tian, Chunyu & Hun, Lianming & Wang, Xin & Li, Zhiyi & Liu, Zhijun & Wei, Wei, 2024. "Ni agglomeration and performance degradation of solid oxide fuel cell: A model-based quantitative study and microstructure optimization," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:12:p:12406-13959:d:60268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.