IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip2p2181-2193.html
   My bibliography  Save this article

Simulation of real time particle deposition and removal processes on tubes by coupled numerical method

Author

Listed:
  • Tong, Zi-Xiang
  • Li, Ming-Jia
  • He, Ya-Ling
  • Tan, Hou-Zhang

Abstract

A numerical method was developed to simulate the fouling processes on tubes. The detailed particle deposition and removal mechanisms were included in the model and the evolution of the shape of fouling layers was obtained. Multiple-relaxation-time lattice Boltzmann method (MRT-LBM) and finite volume method (FVM) were coupled to simulate the air flow. The particle motion was simulated by the probabilistic cellular automata model. The restitution coefficient was calculated by energy conservation and used as the deposition criterion. The particle removal was determined by the force and moment analysis. Since the simulation time was much shorter than the real time of the fouling process, a ratio was proposed for the time conversion between the simulation time and real time. The fouling processes for different particle diameters and inlet velocities were simulated by the proposed method. When the mass concentration was specified, small particles had large fouling rates. The fouling area grew linearly with time without removal mechanism, but grew exponentially to an asymptotic balance value when the removal mechanism was considered. The mass flux, particle deposition and removal were simultaneously influenced by the inlet velocity, so the relation between the inlet velocity and fouling rate was not monotonic. A velocity range existed in which the fouling rate was high. The removal was severe on the windward side and the area right behind the tubes, but relatively moderate on the laterals of the leeward side. The fouling layers grew on the entire leeward side of the tubes. On the windward side, the cone-shaped fouling layers were formed, which changed the flow and stopped the further particle deposition.

Suggested Citation

  • Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:2181-2193
    DOI: 10.1016/j.apenergy.2016.01.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191630023X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.01.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abd-Elhady, M.S. & Rindt, C.C.M. & Wijers, J.G. & van Steenhoven, A.A., 2005. "Particulate fouling in waste incinerators as influenced by the critical sticking velocity and layer porosity," Energy, Elsevier, vol. 30(8), pages 1469-1479.
    2. Qureshi, Bilal Ahmed & Zubair, Syed M., 2012. "The impact of fouling on performance of a vapor compression refrigeration system with integrated mechanical sub-cooling system," Applied Energy, Elsevier, vol. 92(C), pages 750-762.
    3. Sandberg, Jan & Fdhila, Rebei Bel & Dahlquist, Erik & Avelin, Anders, 2011. "Dynamic simulation of fouling in a circulating fluidized biomass-fired boiler," Applied Energy, Elsevier, vol. 88(5), pages 1813-1824, May.
    4. Andersson, Martin & Yuan, Jinliang & Sundén, Bengt, 2010. "Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells," Applied Energy, Elsevier, vol. 87(5), pages 1461-1476, May.
    5. Pan, Ming & Bulatov, Igor & Smith, Robin, 2016. "Improving heat recovery in retrofitting heat exchanger networks with heat transfer intensification, pressure drop constraint and fouling mitigation," Applied Energy, Elsevier, vol. 161(C), pages 611-626.
    6. Zheng, Qiong & Li, Xianfeng & Cheng, Yuanhui & Ning, Guiling & Xing, Feng & Zhang, Huamin, 2014. "Development and perspective in vanadium flow battery modeling," Applied Energy, Elsevier, vol. 132(C), pages 254-266.
    7. Sandberg, Jan & Karlsson, Christer & Fdhila, Rebei Bel, 2011. "A 7Â year long measurement period investigating the correlation of corrosion, deposit and fuel in a biomass fired circulated fluidized bed boiler," Applied Energy, Elsevier, vol. 88(1), pages 99-110, January.
    8. Miranda Fuentes, Johann & Johannes, Kévyn & Kuznik, Frédéric & Cosnier, Matthieu & Virgone, Joseph, 2013. "Melting with convection and radiation in a participating phase change material," Applied Energy, Elsevier, vol. 109(C), pages 454-461.
    9. Middleton, Richard S. & Carey, J. William & Currier, Robert P. & Hyman, Jeffrey D. & Kang, Qinjun & Karra, Satish & Jiménez-Martínez, Joaquín & Porter, Mark L. & Viswanathan, Hari S., 2015. "Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2," Applied Energy, Elsevier, vol. 147(C), pages 500-509.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuruneru, Sahan Trushad Wickramasooriya & Sauret, Emilie & Saha, Suvash Chandra & Gu, YuanTong, 2016. "Numerical investigation of the temporal evolution of particulate fouling in metal foams for air-cooled heat exchangers," Applied Energy, Elsevier, vol. 184(C), pages 531-547.
    2. Cai, Yongtie & Tay, Kunlin & Zheng, Zhimin & Yang, Wenming & Wang, Hui & Zeng, Guang & Li, Zhiwang & Keng Boon, Siah & Subbaiah, Prabakaran, 2018. "Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review," Applied Energy, Elsevier, vol. 230(C), pages 1447-1544.
    3. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    4. Zheng, Zhimin & Yang, Wenming & Wang, Hui & Zhou, Anqi & Cai, Yongtie & Zeng, Guang & Xu, Hongpeng, 2021. "Development of a mechanistic fouling model for predicting deposit formation in a woodchip-fired grate boiler," Energy, Elsevier, vol. 220(C).
    5. Tang, Song-Zhen & Wang, Fei-Long & He, Ya-Ling & Yu, Yang & Tong, Zi-Xiang, 2019. "Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm," Applied Energy, Elsevier, vol. 239(C), pages 908-918.
    6. Peng Liu & Wei Liu & Kexin Gong & Chengjun Han & Hong Zhang & Zhucheng Sui & Renguo Hu, 2022. "Numerical Study on Particulate Fouling Characteristics of Flue with a Particulate Fouling Model Considering Deposition and Removal Mechanisms," Energies, MDPI, vol. 15(22), pages 1-22, November.
    7. Gong, Yan & Zhang, Qing & Guo, Qinghua & Xue, Zhicun & Wang, Fuchen & Yu, Guangsuo, 2017. "Vision-based investigation on the ash/slag particle deposition characteristics in an impinging entrained-flow gasifier," Applied Energy, Elsevier, vol. 206(C), pages 1184-1193.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuruneru, Sahan Trushad Wickramasooriya & Sauret, Emilie & Saha, Suvash Chandra & Gu, YuanTong, 2016. "Numerical investigation of the temporal evolution of particulate fouling in metal foams for air-cooled heat exchangers," Applied Energy, Elsevier, vol. 184(C), pages 531-547.
    2. Namkung, Hueon & Xu, Li-Hua & Kang, Tae-Jin & Kim, Dae Sung & Kwon, Hyok-Bo & Kim, Hyung-Taek, 2013. "Prediction of coal fouling using an alternative index under the gasification condition," Applied Energy, Elsevier, vol. 102(C), pages 1246-1255.
    3. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    4. Weiqiang Song & Hongjian Ni & Ruihe Wang & Mengyun Zhao, 2017. "Wellbore flow field of coiled tubing drilling with supercritical carbon dioxide," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(4), pages 745-755, August.
    5. Liu, X.G. & He, C. & He, C.C. & Chen, J.J. & Zhang, B.J. & Chen, Q.L., 2017. "A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries," Energy, Elsevier, vol. 118(C), pages 1131-1145.
    6. Yuan, Chenguang & Xing, Feng & Zheng, Qiong & Zhang, Huamin & Li, Xianfeng & Ma, Xiangkun, 2020. "Factor analysis of the uniformity of the transfer current density in vanadium flow battery by an improved three-dimensional transient model," Energy, Elsevier, vol. 194(C).
    7. Zhao‐Zhong Yang & Liang‐Ping Yi & Xiao‐Gang Li & Yu Li & Min Jia, 2018. "Phase control of downhole fluid during supercritical carbon dioxide fracturing," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 1079-1089, December.
    8. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    9. Han, Jinju & Lee, Minkyu & Lee, Wonsuk & Lee, Youngsoo & Sung, Wonmo, 2016. "Effect of gravity segregation on CO2 sequestration and oil production during CO2 flooding," Applied Energy, Elsevier, vol. 161(C), pages 85-91.
    10. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Yin, Zhanchao & Zhang, Xiao, 2022. "Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study," Energy, Elsevier, vol. 260(C).
    11. Chapela, Sergio & Cid, Natalia & Porteiro, Jacobo & Míguez, José Luis, 2020. "Numerical transient modelling of the fouling phenomena and its influence on thermal performance in a low-scale biomass shell boiler," Renewable Energy, Elsevier, vol. 161(C), pages 309-318.
    12. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    13. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    14. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Pan, Jienan & Du, Xuetian & Wang, Xianglong & Hou, Quanlin & Wang, Zhenzhi & Yi, Jiale & Li, Meng, 2024. "Pore and permeability changes in coal induced by true triaxial supercritical carbon dioxide fracturing based on low-field nuclear magnetic resonance," Energy, Elsevier, vol. 286(C).
    16. Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Li, Fenghai & Li, Zhenzhu & Huang, Jiejie & Fang, Yitian, 2014. "Understanding mineral behaviors during anthracite fluidized-bed gasification based on slag characteristics," Applied Energy, Elsevier, vol. 131(C), pages 279-287.
    18. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.
    19. Sung-Hoon Seol & Ahmed A. Serageldin & Oh Kyung Kwon, 2020. "Experimental Research on a Heat Pump Applying a Ball-Circulating Type Automatic Fouling Cleaning System for Fish Farms," Energies, MDPI, vol. 13(22), pages 1-18, November.
    20. Dai, Xuguang & Wei, Chongtao & Wang, Meng & Ma, Ruying & Song, Yu & Zhang, Junjian & Wang, Xiaoqi & Shi, Xuan & Vandeginste, Veerle, 2023. "Interaction mechanism of supercritical CO2 with shales and a new quantitative storage capacity evaluation method," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:2181-2193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.