IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v163y2016icp254-262.html
   My bibliography  Save this article

The structure and pyrolysis product distribution of lignite from different sedimentary environment

Author

Listed:
  • Liu, Peng
  • Zhang, Dexiang
  • Wang, Lanlan
  • Zhou, Yang
  • Pan, Tieying
  • Lu, Xilan

Abstract

Low-temperature pyrolysis is an economically efficient method for lignite to obtain coal tar and improve its combustion calorific value. The research on the distribution of pyrolysis product (especially coal tar yield) plays an important role in energy application and economic development in the now and future. Pyrolysis test was carried out in a tube reactor at 873K for 15min. The structure of the lignite was measured by solid 13C nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). The thermal analysis was analyzed by thermo-gravimetric (TG) analyzer. The results show that the pyrolysis product distribution is related to the breakage of branch structures of aromatic ring in lignites from different sedimentary environment. The gas yield and composition are related to the decomposition of carbonyl group and the breakage of aliphatic carbon. The tar yield derived from lignite pyrolysis follows the order: Xianfeng lignite (XF, 13.67wt.%)>Xiaolongtan lignite (XLT, 7.97wt.%)>Inner Mongolia lignite (IM, 6.30wt.%), which is mainly influenced by the aliphatic carbon contents, the CH2/CH3 ratio and the oxygen functional groups in lignite. The pyrolysis water yield depends on the decomposition of oxygen functional groups. IM has the highest content of oxygen-linked carbon so that the pyrolysis water yield derived from IM is the highest (9.20wt.%), and is far more than that from the other two lignites.

Suggested Citation

  • Liu, Peng & Zhang, Dexiang & Wang, Lanlan & Zhou, Yang & Pan, Tieying & Lu, Xilan, 2016. "The structure and pyrolysis product distribution of lignite from different sedimentary environment," Applied Energy, Elsevier, vol. 163(C), pages 254-262.
  • Handle: RePEc:eee:appene:v:163:y:2016:i:c:p:254-262
    DOI: 10.1016/j.apenergy.2015.10.166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915014087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Wang, Zhongde & Zhang, Zhonglin & Abudula, Abuliti, 2015. "Oil production from mild pyrolysis of low-rank coal in molten salts media," Applied Energy, Elsevier, vol. 154(C), pages 944-950.
    2. Guo, Zhihang & Wang, Qinhui & Fang, Mengxiang & Luo, Zhongyang & Cen, Kefa, 2014. "Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant," Applied Energy, Elsevier, vol. 113(C), pages 1301-1314.
    3. Chen, Bo & Wei, Xian-Yong & Zong, Zhi-Min & Yang, Zhu-Sheng & Qing, Yu & Liu, Chang, 2011. "Difference in chemical composition of supercritical methanolysis products between two lignites," Applied Energy, Elsevier, vol. 88(12), pages 4570-4576.
    4. Al-Ismaily, Hilal A. & Probert, Douglas, 1997. "Prospects for Omani coal," Applied Energy, Elsevier, vol. 58(2-3), pages 131-160, October.
    5. Sonibare, Oluwadayo O. & Haeger, Tobias & Foley, Stephen F., 2010. "Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy," Energy, Elsevier, vol. 35(12), pages 5347-5353.
    6. Pei, Pei & Wang, Qicheng & Wu, Daohong, 2015. "Application and research on Regenerative High Temperature Air Combustion technology on low-rank coal pyrolysis," Applied Energy, Elsevier, vol. 156(C), pages 762-766.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Jun & Su, Sheng & Sun, Zhijun & Qing, Mengxia & Xiong, Zhe & Wang, Yi & Jiang, Long & Hu, Song & Xiang, Jun, 2016. "Effects of steam and CO2 on the characteristics of chars during devolatilization in oxy-steam combustion process," Applied Energy, Elsevier, vol. 182(C), pages 20-28.
    2. Ding, Lu & Dai, Zhenghua & Guo, Qinghua & Yu, Guangsuo, 2017. "Effects of in-situ interactions between steam and coal on pyrolysis and gasification characteristics of pulverized coals and coal water slurry," Applied Energy, Elsevier, vol. 187(C), pages 627-639.
    3. Chen, Shuai & Zhou, Wei & Ding, Yani & Zhao, Guangbo & Gao, Jihui, 2021. "Fe3+-mediated coal-assisted water electrolysis for hydrogen production: Roles of mineral matter and oxygen-containing functional groups in coal," Energy, Elsevier, vol. 220(C).
    4. Xin, Lin & An, Mingyu & Feng, Mingze & Li, Kaixuan & Cheng, Weimin & Liu, Weitao & Hu, Xiangming & Wang, Zhigang & Han, Limin, 2021. "Study on pyrolysis characteristics of lump coal in the context of underground coal gasification," Energy, Elsevier, vol. 237(C).
    5. Cui, Tongmin & Fan, Wenke & Dai, Zhenghua & Guo, Qinghua & Yu, Guangsuo & Wang, Fuchen, 2016. "Variation of the coal chemical structure and determination of the char molecular size at the early stage of rapid pyrolysis," Applied Energy, Elsevier, vol. 179(C), pages 650-659.
    6. Liu, Peng & Le, Jiawei & Wang, Lanlan & Pan, Tieying & Lu, Xilan & Zhang, Dexiang, 2016. "Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis," Applied Energy, Elsevier, vol. 183(C), pages 470-477.
    7. Tao, Meng & Jl, Xie & Xm, Li & Jw, Ma & Yang, Yue, 2020. "Experimental study on the evolutional trend of pore structures and fractal dimension of low-rank coal rich clay subjected to a coupled thermo-hydro-mechanical-chemical environment," Energy, Elsevier, vol. 203(C).
    8. Zhou, Xiao-Dong & Ma, Feng-Yun & Wu, Hao & Li, Yi-Zhao & Fan, Xing & Zhu, Yu-Fei & Wei, Xian-Yong & Liu, Jing-Mei & Zhong, Mei, 2021. "The effects of Fe2O3 and MoS2 on the catalytic activation pathway of hydrogen sources during direct coal liquefaction," Energy, Elsevier, vol. 234(C).
    9. Li, Hongjun & Chang, Qinghua & Gao, Rui & Dai, Zhenghua & Chen, Xueli & Yu, Guangsuo & Wang, Fuchen, 2018. "Fractal characteristics and reactivity evolution of lignite during the upgrading process by supercritical CO2 extraction," Applied Energy, Elsevier, vol. 225(C), pages 559-569.
    10. Fan, Yuqiang & Guan, Jun & He, Demin & Hong, Yu & Zhang, Qiumin, 2023. "The influence of inherent minerals on the constant-current electrolysis process of coal-water slurry," Energy, Elsevier, vol. 285(C).
    11. Zhang, Jie & Zheng, Nan & Wang, Jie, 2016. "Two-stage hydrogasification of different rank coals with a focus on relationships between yields of products and coal properties or structures," Applied Energy, Elsevier, vol. 173(C), pages 438-447.
    12. Zhou, Wei & Chen, Shuai & Meng, Xiaoxiao & Li, Jiayi & Huang, Yuming & Gao, Jihui & Zhao, Guangbo & He, Yong & Qin, Yukun, 2022. "Two-step coal-assisted water electrolysis for energy-saving hydrogen production at cell voltage of 1.2 V with current densities larger than 150 mA/cm2," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Peng & Le, Jiawei & Wang, Lanlan & Pan, Tieying & Lu, Xilan & Zhang, Dexiang, 2016. "Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis," Applied Energy, Elsevier, vol. 183(C), pages 470-477.
    2. Chen, Zhaohui & Li, Yunjia & Lai, Dengguo & Geng, Sulong & Zhou, Qi & Gao, Shiqiu & Xu, Guangwen, 2018. "Coupling coal pyrolysis with char gasification in a multi-stage fluidized bed to co-produce high-quality tar and syngas," Applied Energy, Elsevier, vol. 215(C), pages 348-355.
    3. Xu, Shipei & Zeng, Xi & Han, Zhennan & Cheng, Jiguang & Wu, Rongcheng & Chen, Zhaohui & Masĕk, Ondřej & Fan, Xianfeng & Xu, Guangwen, 2019. "Quick pyrolysis of a massive coal sample via rapid infrared heating," Applied Energy, Elsevier, vol. 242(C), pages 732-740.
    4. Lin, Xiongchao & Luo, Meng & Li, Shouyi & Yang, Yuanping & Chen, Xujun & Tian, Bin & Wang, Yonggang, 2017. "The evolutionary route of coal matrix during integrated cascade pyrolysis of a typical low-rank coal," Applied Energy, Elsevier, vol. 199(C), pages 335-346.
    5. Duan, Wenjun & Yu, Qingbo & Liu, Junxiang & Wu, Tianwei & Yang, Fan & Qin, Qin, 2016. "Experimental and kinetic study of steam gasification of low-rank coal in molten blast furnace slag," Energy, Elsevier, vol. 111(C), pages 859-868.
    6. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    7. Hu, Yukun & Wang, Jihong & Tan, CK & Sun, Chenggong & Liu, Hao, 2018. "Coupling detailed radiation model with process simulation in Aspen Plus: A case study on fluidized bed combustor," Applied Energy, Elsevier, vol. 227(C), pages 168-179.
    8. Abunowara, Mustafa & Sufian, Suriati & Bustam, Mohamad Azmi & Eldemerdash, Usama & Suleman, Humbul & Bencini, Roberto & Assiri, Mohammed Ali & Ullah, Sami & Al-Sehemi, Abdullah G., 2020. "Experimental measurements of carbon dioxide, methane and nitrogen high-pressure adsorption properties onto Malaysian coals under various conditions," Energy, Elsevier, vol. 210(C).
    9. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    10. Xie, Yingpu & Zeng, Kuo & Flamant, Gilles & Yang, Haiping & Liu, Nian & He, Xiao & Yang, Xinyi & Nzihou, Ange & Chen, Hanping, 2019. "Solar pyrolysis of cotton stalk in molten salt for bio-fuel production," Energy, Elsevier, vol. 179(C), pages 1124-1132.
    11. Huang, Yi & Yi, Qun & Wei, Guo-qiang & Kang, Jing-xian & Li, Wen-ying & Feng, Jie & Xie, Ke-chang, 2018. "Energy use, greenhouse gases emission and cost effectiveness of an integrated high– and low–temperature Fisher–Tropsch synthesis plant from a lifecycle viewpoint," Applied Energy, Elsevier, vol. 228(C), pages 1009-1019.
    12. Li, Jiuqing & Qin, Yong & Shen, Jian & Chen, Yilin, 2024. "Evolution of carbon nanostructures during coal graphitization: Insights from X-ray diffraction and high-resolution transmission electron microscopy," Energy, Elsevier, vol. 290(C).
    13. Prabhakaran, SP Sathiya & Swaminathan, Ganapathiraman & Joshi, Viraj V., 2022. "Combustion and pyrolysis kinetics of Australian lignite coal and validation by artificial neural networks," Energy, Elsevier, vol. 242(C).
    14. Zhang, Yongliang & Jin, Bo & Zou, Xixian & Zhao, Haibo, 2016. "A clean coal utilization technology based on coal pyrolysis and chemical looping with oxygen uncoupling: Principle and experimental validation," Energy, Elsevier, vol. 98(C), pages 181-189.
    15. Hui Fan & Menglin Ren & Caiyun Feng & Yue Jiao & Yonghui Bai & Qingxiang Ma, 2022. "Pyrolysis Characteristics of Hailar Lignite in the Presence of Polyvinyl Chloride: Products Distribution and Chlorine Migration," Energies, MDPI, vol. 15(9), pages 1-12, May.
    16. Zhao, Ying-jie & Zhang, Yu-ke & Cui, Yang & Duan, Yuan-yuan & Huang, Yi & Wei, Guo-qiang & Mohamed, Usama & Shi, Li-juan & Yi, Qun & Nimmo, William, 2022. "Pinch combined with exergy analysis for heat exchange network and techno-economic evaluation of coal chemical looping combustion power plant with CO2 capture," Energy, Elsevier, vol. 238(PA).
    17. Zhai, Xiaowei & Ge, Hui & Wang, Tingyan & Shu, Chi-Min & Li, Jun, 2020. "Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal," Energy, Elsevier, vol. 205(C).
    18. Chaudhary Awais Salman & Ch Bilal Omer, 2020. "Process Modelling and Simulation of Waste Gasification-Based Flexible Polygeneration Facilities for Power, Heat and Biofuels Production," Energies, MDPI, vol. 13(16), pages 1-22, August.
    19. Zhang, Nan & Zhang, Jianliang & Wang, Guangwei & Ning, Xiaojun & Meng, Fanyi & Li, Chuanhui & Ye, Lian & Wang, Chuan, 2022. "Physicochemical characteristics of three-phase products of low-rank coal by hydrothermal carbonization: experimental research and quantum chemical calculation," Energy, Elsevier, vol. 261(PB).
    20. Zhang, Ji & Liang, Yanna & Harpalani, Satya, 2016. "Optimization of methane production from bituminous coal through biogasification," Applied Energy, Elsevier, vol. 183(C), pages 31-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:163:y:2016:i:c:p:254-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.