IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v234y2021ics0360544221015115.html
   My bibliography  Save this article

The effects of Fe2O3 and MoS2 on the catalytic activation pathway of hydrogen sources during direct coal liquefaction

Author

Listed:
  • Zhou, Xiao-Dong
  • Ma, Feng-Yun
  • Wu, Hao
  • Li, Yi-Zhao
  • Fan, Xing
  • Zhu, Yu-Fei
  • Wei, Xian-Yong
  • Liu, Jing-Mei
  • Zhong, Mei

Abstract

Direct coal liquefaction (DCL) can be highly promoted by catalysts due to the acceleration of hydrogen activation. There are two pathways of activation for H2 during the process of DCL. One is that H2 dissolves in the liquid phase and then transfers to coal after splitting (molecular hydrogen), and the other is dissolved H2 is hydrogenated with solvent and then transferred from solvent to coal (transfer hydrogen). In addition, hydrogen in the solvent molecules can be supplied to coal (solvent hydrogen). The effects of two catalysts, Fe2O3 and MoS2, on the activation of molecular hydrogen, transfer hydrogen, and solvent hydrogen during DCL were investigated. Herein, we conducted a series of experiments, including DCL with H2-decalin, DCL with N2-tetralin, tetralin dehydrogenation, naphthalene hydrogenation, and DCL with H2-tetralin. The catalyst and products were characterized by XRD, GC, GC-MS, 1H NMR and TG. Quantum chemistry reveals the catalyst effect on hydrogen activation. The catalytic performance and different hydrogen consumption reveal that the Fe2O3 catalyst primarily activates molecular hydrogen, and MoS2 activates all three kinds of hydrogen. This work not only reveals the catalyst effect on hydrogen activation but also gives light to the design of an appropriate and effective catalyst for DCLs.

Suggested Citation

  • Zhou, Xiao-Dong & Ma, Feng-Yun & Wu, Hao & Li, Yi-Zhao & Fan, Xing & Zhu, Yu-Fei & Wei, Xian-Yong & Liu, Jing-Mei & Zhong, Mei, 2021. "The effects of Fe2O3 and MoS2 on the catalytic activation pathway of hydrogen sources during direct coal liquefaction," Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015115
    DOI: 10.1016/j.energy.2021.121263
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221015115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Peng & Zhang, Dexiang & Wang, Lanlan & Zhou, Yang & Pan, Tieying & Lu, Xilan, 2016. "The structure and pyrolysis product distribution of lignite from different sedimentary environment," Applied Energy, Elsevier, vol. 163(C), pages 254-262.
    2. Shui, Hengfu & Shan, Chuanjun & Cai, Zhengyi & Wang, Zhicai & Lei, Zhiping & Ren, Shibiao & Pan, Chunxiu & Li, Haiping, 2011. "Co-liquefaction behavior of a sub-bituminous coal and sawdust," Energy, Elsevier, vol. 36(11), pages 6645-6650.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xiao-Dong & Wu, Hao & Liu, Jing-Mei & Huang, Xue-Li & Fan, Xing & Jin, Li-Jun & Zhu, Yu-Fei & Ma, Feng-Yun & Zhong, Mei, 2022. "Study on oxygen species in the products of co-liquefaction of coal and petroleum residues," Energy, Elsevier, vol. 260(C).
    2. Hu, Lin & Guo, Xian-Hou & Wei, Xian-Yong & Liu, Fang-Jing & Xu, Mei-Ling & Liu, Tian-Long & Zhang, Feng-Bin, 2023. "Research on the influence of sequential isopropanolysis liquefaction on the composition of liquid tars and physicochemical structure evolution of renbei lignite," Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Yuqiang & Guan, Jun & He, Demin & Hong, Yu & Zhang, Qiumin, 2023. "The influence of inherent minerals on the constant-current electrolysis process of coal-water slurry," Energy, Elsevier, vol. 285(C).
    2. Ding, Lu & Dai, Zhenghua & Guo, Qinghua & Yu, Guangsuo, 2017. "Effects of in-situ interactions between steam and coal on pyrolysis and gasification characteristics of pulverized coals and coal water slurry," Applied Energy, Elsevier, vol. 187(C), pages 627-639.
    3. Tao, Meng & Jl, Xie & Xm, Li & Jw, Ma & Yang, Yue, 2020. "Experimental study on the evolutional trend of pore structures and fractal dimension of low-rank coal rich clay subjected to a coupled thermo-hydro-mechanical-chemical environment," Energy, Elsevier, vol. 203(C).
    4. Zhao, Jun & Mangi, Hassan Nasir & Zhang, Zhenyue & Chi, Ru'an & Zhang, Haochen & Xian, Mengyu & Liu, Hong & Zuo, Haibin & Wang, Guangwei & Xu, Zhigao & Wu, Ming, 2022. "The structural characteristics and gasification performance of cokes of modified coal extracted from the mixture of low-rank coal and biomass," Energy, Elsevier, vol. 258(C).
    5. Brand, Steffen & Susanti, Ratna Frida & Kim, Seok Ki & Lee, Hong-shik & Kim, Jaehoon & Sang, Byung-In, 2013. "Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: Influence of physical process parameters," Energy, Elsevier, vol. 59(C), pages 173-182.
    6. Liu, Peng & Le, Jiawei & Wang, Lanlan & Pan, Tieying & Lu, Xilan & Zhang, Dexiang, 2016. "Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis," Applied Energy, Elsevier, vol. 183(C), pages 470-477.
    7. Zhou, Wei & Chen, Shuai & Meng, Xiaoxiao & Li, Jiayi & Huang, Yuming & Gao, Jihui & Zhao, Guangbo & He, Yong & Qin, Yukun, 2022. "Two-step coal-assisted water electrolysis for energy-saving hydrogen production at cell voltage of 1.2 V with current densities larger than 150 mA/cm2," Energy, Elsevier, vol. 260(C).
    8. Oyedun, Adetoyese Olajire & Gebreegziabher, Tesfaldet & Ng, Denny K.S. & Hui, Chi Wai, 2014. "Mixed-waste pyrolysis of biomass and plastics waste – A modelling approach to reduce energy usage," Energy, Elsevier, vol. 75(C), pages 127-135.
    9. Cui, Tongmin & Fan, Wenke & Dai, Zhenghua & Guo, Qinghua & Yu, Guangsuo & Wang, Fuchen, 2016. "Variation of the coal chemical structure and determination of the char molecular size at the early stage of rapid pyrolysis," Applied Energy, Elsevier, vol. 179(C), pages 650-659.
    10. Li, Hongjun & Chang, Qinghua & Gao, Rui & Dai, Zhenghua & Chen, Xueli & Yu, Guangsuo & Wang, Fuchen, 2018. "Fractal characteristics and reactivity evolution of lignite during the upgrading process by supercritical CO2 extraction," Applied Energy, Elsevier, vol. 225(C), pages 559-569.
    11. Zhang, Jie & Zheng, Nan & Wang, Jie, 2016. "Two-stage hydrogasification of different rank coals with a focus on relationships between yields of products and coal properties or structures," Applied Energy, Elsevier, vol. 173(C), pages 438-447.
    12. Jiang, Yuan & Bhattacharyya, Debangsu, 2017. "Techno-economic analysis of direct coal-biomass to liquids (CBTL) plants with shale gas utilization and CO2 capture and storage (CCS)," Applied Energy, Elsevier, vol. 189(C), pages 433-448.
    13. Xu, Jun & Su, Sheng & Sun, Zhijun & Qing, Mengxia & Xiong, Zhe & Wang, Yi & Jiang, Long & Hu, Song & Xiang, Jun, 2016. "Effects of steam and CO2 on the characteristics of chars during devolatilization in oxy-steam combustion process," Applied Energy, Elsevier, vol. 182(C), pages 20-28.
    14. Xin, Lin & An, Mingyu & Feng, Mingze & Li, Kaixuan & Cheng, Weimin & Liu, Weitao & Hu, Xiangming & Wang, Zhigang & Han, Limin, 2021. "Study on pyrolysis characteristics of lump coal in the context of underground coal gasification," Energy, Elsevier, vol. 237(C).
    15. Yang, Ziqi & Wu, Yuanqing & Zhang, Zisheng & Li, Hong & Li, Xingang & Egorov, Roman I. & Strizhak, Pavel A. & Gao, Xin, 2019. "Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 384-398.
    16. Chen, Shuai & Zhou, Wei & Ding, Yani & Zhao, Guangbo & Gao, Jihui, 2021. "Fe3+-mediated coal-assisted water electrolysis for hydrogen production: Roles of mineral matter and oxygen-containing functional groups in coal," Energy, Elsevier, vol. 220(C).
    17. Jiang, Yuan & Bhattacharyya, Debangsu, 2016. "Process modeling of direct coal-biomass to liquids (CBTL) plants with shale gas utilization and CO2 capture and storage (CCS)," Applied Energy, Elsevier, vol. 183(C), pages 1616-1632.

    More about this item

    Keywords

    Direct coal liquefaction; Hydrogen transfer; Fe2O3; MoS2;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.