IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544224000872.html
   My bibliography  Save this article

Evolution of carbon nanostructures during coal graphitization: Insights from X-ray diffraction and high-resolution transmission electron microscopy

Author

Listed:
  • Li, Jiuqing
  • Qin, Yong
  • Shen, Jian
  • Chen, Yilin

Abstract

The evolution of carbon nanostructures during coal graphitization was investigated. The X-ray diffraction (XRD) results showed that amorphous and microcrystalline carbon coexist in anthracite and meta-anthracite, and the latter has a higher proportion of microcrystalline carbon; additionally, semi-graphite and coal-based graphite are mostly composed of crystalline carbon. Coal graphitization starts in anthracite, accompanied by an increase in crystallite size and a decrease in interplanar spacing nonlinearly, especially in semi-graphite, and a large ordered structure is formed in coal-based graphite. The high-resolution transmission electron microscopy (HRTEM) results intuitively reveal the graphitization process by false-colored microphotography, and both the XRD and HRTEM results indicate similar evolution paths. Four types of carbon nanostructures, namely, amorphous, turbostratic, concentric and graphitic-like structures, are identified according to their morphology. Aromatic fringes are arranged randomly in the amorphous structure and are composed of amorphous carbon; local ordering occurs in the turbostratic structure and is commonly observed in anthracite and meta-anthracite. In addition, a concentric structure with hollow pores and parallel annular aromatic fringes was observed, indicating multiple preferred orientations, and the graphitic-like structure was composed of parallel aromatic fringes. Micropores provide the necessary adjustment space for the ordered conversion of carbon nanostructures, and the flattening and merging of micropores may contribute to the enhancement of graphitization.

Suggested Citation

  • Li, Jiuqing & Qin, Yong & Shen, Jian & Chen, Yilin, 2024. "Evolution of carbon nanostructures during coal graphitization: Insights from X-ray diffraction and high-resolution transmission electron microscopy," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000872
    DOI: 10.1016/j.energy.2024.130316
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000872
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Jun & Mangi, Hassan Nasir & Zhang, Zhenyue & Chi, Ru'an & Zhang, Haochen & Xian, Mengyu & Liu, Hong & Zuo, Haibin & Wang, Guangwei & Xu, Zhigao & Wu, Ming, 2022. "The structural characteristics and gasification performance of cokes of modified coal extracted from the mixture of low-rank coal and biomass," Energy, Elsevier, vol. 258(C).
    2. Ayako Hashimoto & Kazu Suenaga & Alexandre Gloter & Koki Urita & Sumio Iijima, 2004. "Direct evidence for atomic defects in graphene layers," Nature, Nature, vol. 430(7002), pages 870-873, August.
    3. Zhou, Tianhong & Ge, Lichao & Li, Qian & Yang, Long & Mai, Longhui & Huang, Jing & Wang, Yang & Xu, Chang, 2023. "Combustion and gasification properties of petroleum coke and its pyrolytic semi-coke," Energy, Elsevier, vol. 266(C).
    4. Sonibare, Oluwadayo O. & Haeger, Tobias & Foley, Stephen F., 2010. "Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy," Energy, Elsevier, vol. 35(12), pages 5347-5353.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuang, Yucen & Jiang, Tao & Wu, Longqi & Liu, Xiaoqian & Yang, Xuke & Sher, Farooq & Wei, Zhifang & Zhang, Shengfu, 2023. "High-temperature rheological behavior and non-isothermal pyrolysis mechanism of macerals separated from different coals," Energy, Elsevier, vol. 277(C).
    2. Moon, Hyeong-Bin & Lee, Ji-Hwan & Kim, Hyung-Tae & Lee, Jin-Wook & Lee, Byoung-Hwa & Jeon, Chung-Hwan, 2024. "Effect of high-pressure pyrolysis on syngas and char structure of petroleum coke," Energy, Elsevier, vol. 299(C).
    3. Abunowara, Mustafa & Sufian, Suriati & Bustam, Mohamad Azmi & Eldemerdash, Usama & Suleman, Humbul & Bencini, Roberto & Assiri, Mohammed Ali & Ullah, Sami & Al-Sehemi, Abdullah G., 2020. "Experimental measurements of carbon dioxide, methane and nitrogen high-pressure adsorption properties onto Malaysian coals under various conditions," Energy, Elsevier, vol. 210(C).
    4. Prabhakaran, SP Sathiya & Swaminathan, Ganapathiraman & Joshi, Viraj V., 2022. "Combustion and pyrolysis kinetics of Australian lignite coal and validation by artificial neural networks," Energy, Elsevier, vol. 242(C).
    5. Feng, Hongcui & Zhou, Tianhong & Ge, Lichao & Li, Qian & Zhao, Chan & Huang, Jing & Wang, Yang, 2024. "Study on the preparation of high value-added activated carbon from petroleum coke: Comparison between one- and two-step methods for carbonization and activation," Energy, Elsevier, vol. 292(C).
    6. Zhai, Xiaowei & Ge, Hui & Wang, Tingyan & Shu, Chi-Min & Li, Jun, 2020. "Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal," Energy, Elsevier, vol. 205(C).
    7. Kou, Kaikai & Zhou, Wei & Chen, Shuai & Gao, Jihui, 2021. "Mechanism investigation of carboxyl functional groups catalytic oxidation in coal assisted water electrolysis cell," Energy, Elsevier, vol. 226(C).
    8. Liang, Wang & Ning, Xiaojun & Wang, Guangwei & Zhang, Jianliang & Li, Rongpeng & Chang, Weiwei & Wang, Chuan, 2021. "Influence mechanism and kinetic analysis of co-gasification of biomass char and semi-coke," Renewable Energy, Elsevier, vol. 163(C), pages 331-341.
    9. Xin, Lin & An, Mingyu & Feng, Mingze & Li, Kaixuan & Cheng, Weimin & Liu, Weitao & Hu, Xiangming & Wang, Zhigang & Han, Limin, 2021. "Study on pyrolysis characteristics of lump coal in the context of underground coal gasification," Energy, Elsevier, vol. 237(C).
    10. Denis Sh. Sabirov & Ottorino Ori, 2020. "Skeletal Rearrangements of the C 240 Fullerene: Efficient Topological Descriptors for Monitoring Stone–Wales Transformations," Mathematics, MDPI, vol. 8(6), pages 1-18, June.
    11. Liu, Peng & Zhang, Dexiang & Wang, Lanlan & Zhou, Yang & Pan, Tieying & Lu, Xilan, 2016. "The structure and pyrolysis product distribution of lignite from different sedimentary environment," Applied Energy, Elsevier, vol. 163(C), pages 254-262.
    12. Xu, Jun & Tang, Hao & Su, Sheng & Liu, Jiawei & Xu, Kai & Qian, Kun & Wang, Yi & Zhou, Yingbiao & Hu, Song & Zhang, Anchao & Xiang, Jun, 2018. "A study of the relationships between coal structures and combustion characteristics: The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals," Applied Energy, Elsevier, vol. 212(C), pages 46-56.
    13. Shi, Chen & Liu, Xiangrong & Wu, Hao & Zhao, Shunsheng & Yang, Zaiwen, 2023. "Enhancements of mixed surfactants on Wucaiwan coal biodegradation by Nocardia mangyaensis," Energy, Elsevier, vol. 266(C).
    14. Fan, Yuqiang & Guan, Jun & He, Demin & Hong, Yu & Zhang, Qiumin, 2023. "The influence of inherent minerals on the constant-current electrolysis process of coal-water slurry," Energy, Elsevier, vol. 285(C).
    15. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Wang, Lei & Meng, Qiaorong & Lu, Yang & Gao, Qiang, 2023. "Comparative study on the chemical structure characteristics of lump coal during superheated water vapor pyrolysis and conventional pyrolysis," Energy, Elsevier, vol. 276(C).
    16. Kareemulla, Dudekula & Gusev, Sergey & Bhattacharya, Sankar & Mahajani, Sanjay M., 2024. "Entrained-flow pyrolysis and (co-)gasification characteristics of Indian high-ash coals," Energy, Elsevier, vol. 294(C).
    17. Gu, Suqian & Xu, Zhiqiang & Ren, Yangguang & Tu, Yanan & Sun, Meijie & Liu, Xiangyang, 2021. "An approach for upgrading lignite to improve slurryability: Blending with direct coal liquefaction residue under microwave-assisted pyrolysis," Energy, Elsevier, vol. 222(C).
    18. Wendi Sun & Li Bai & Mingshu Chi & Xiuling Xu & Zhao Chen & Kecheng Yu, 2023. "Study on the Evolution Pattern of the Aromatics of Lignin during Hydrothermal Carbonization," Energies, MDPI, vol. 16(3), pages 1-14, January.
    19. Zhang, Wenda & Sun, Shaozeng & Zhao, Yijun & Zhao, Zujie & Wang, Pengxiang & Feng, Dongdong & Li, Pengfei, 2020. "Effects of total pressure and CO2 partial pressure on the physicochemical properties and reactivity of pressurized coal char produced at rapid heating rate," Energy, Elsevier, vol. 208(C).
    20. Zhu, Wenkun & Li, Xiaohui & Sun, Rui & Cao, Zhen & Yuan, Mengfan & Sun, Liutao & Yu, Xin & Wu, Jiangquan, 2022. "Investigation of the CN and C2 emission characteristics and microstructural evolution of coal to char using laser-induced breakdown spectroscopy and Raman spectroscopy," Energy, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.