IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v242y2019icp732-740.html
   My bibliography  Save this article

Quick pyrolysis of a massive coal sample via rapid infrared heating

Author

Listed:
  • Xu, Shipei
  • Zeng, Xi
  • Han, Zhennan
  • Cheng, Jiguang
  • Wu, Rongcheng
  • Chen, Zhaohui
  • Masĕk, Ondřej
  • Fan, Xianfeng
  • Xu, Guangwen

Abstract

There are few studies about pyrolysis with the a massive sample at high heating rates to obtain liquid and gas products. This study adopted a newly designed small fixed bed reactor mounted with infrared heating to minimize secondary reactions to volatiles and further to investigate the pyrolysis of Xinjiang Naomaohu coal in terms of pyrolysis products characterization at different temperatures and heating rates. Infrared heating has good penetrability to heat the inner layer of the sample at a quick rate of up to 1723 °C/min in the particle bed. For the tested reactor at 700 °C, raising the heating rate decreased the yields of gas and char and increased the yield of tar. The realized tar yield was higher than that in Gray-King (G-K) assay at heating rates above 18 °C/min. For the heating rate of 667 °C/min at the pyrolysis temperature of 700 °C, the obtained maximum yield of tar was 134% of the G-K assay oil yield. Overall, increasing the heating rate decreased char yield and increased the production of total volatiles. At higher heating rates, the tar became heavier, while at higher pyrolysis temperatures, it produced more light tar. The extraction rate of hydrogen from coal was found to be subject to a linear relationship with pyrolysis gas yield.

Suggested Citation

  • Xu, Shipei & Zeng, Xi & Han, Zhennan & Cheng, Jiguang & Wu, Rongcheng & Chen, Zhaohui & Masĕk, Ondřej & Fan, Xianfeng & Xu, Guangwen, 2019. "Quick pyrolysis of a massive coal sample via rapid infrared heating," Applied Energy, Elsevier, vol. 242(C), pages 732-740.
  • Handle: RePEc:eee:appene:v:242:y:2019:i:c:p:732-740
    DOI: 10.1016/j.apenergy.2019.03.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191930488X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.03.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zhaohui & Li, Yunjia & Lai, Dengguo & Geng, Sulong & Zhou, Qi & Gao, Shiqiu & Xu, Guangwen, 2018. "Coupling coal pyrolysis with char gasification in a multi-stage fluidized bed to co-produce high-quality tar and syngas," Applied Energy, Elsevier, vol. 215(C), pages 348-355.
    2. Wang, Chang’an & Zhang, Xiaoming & Liu, Yinhe & Che, Defu, 2012. "Pyrolysis and combustion characteristics of coals in oxyfuel combustion," Applied Energy, Elsevier, vol. 97(C), pages 264-273.
    3. Zhang, Fan & Xu, Deping & Wang, Yonggang & Argyle, Morris D. & Fan, Maohong, 2015. "CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst," Applied Energy, Elsevier, vol. 145(C), pages 295-305.
    4. Pei, Pei & Wang, Qicheng & Wu, Daohong, 2015. "Application and research on Regenerative High Temperature Air Combustion technology on low-rank coal pyrolysis," Applied Energy, Elsevier, vol. 156(C), pages 762-766.
    5. Sciazko, Marek, 2003. "Static model of coal pyrolysis in a circulating fluidised-bed reactor," Applied Energy, Elsevier, vol. 74(3-4), pages 455-465, March.
    6. Guo, Zhihang & Wang, Qinhui & Fang, Mengxiang & Luo, Zhongyang & Cen, Kefa, 2014. "Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant," Applied Energy, Elsevier, vol. 113(C), pages 1301-1314.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinli Li & Xiaobin Qi & Rui Chen & Zhiping Zhu & Xiaofang Wang, 2024. "The Influence of Solid Heat Carrier Load of Char on Pyrolysis Characteristics of Pulverized Coal in a Fluidized Bed Reactor," Energies, MDPI, vol. 17(10), pages 1-12, May.
    2. Ziad Abu El-Rub & Joanna Kujawa & Esra’a Albarahmieh & Nafisah Al-Rifai & Fathieh Qaimari & Samer Al-Gharabli, 2019. "High Throughput Screening and Characterization Methods of Jordanian Oil Shale as a Case Study," Energies, MDPI, vol. 12(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Xiongchao & Luo, Meng & Li, Shouyi & Yang, Yuanping & Chen, Xujun & Tian, Bin & Wang, Yonggang, 2017. "The evolutionary route of coal matrix during integrated cascade pyrolysis of a typical low-rank coal," Applied Energy, Elsevier, vol. 199(C), pages 335-346.
    2. Liu, Peng & Le, Jiawei & Wang, Lanlan & Pan, Tieying & Lu, Xilan & Zhang, Dexiang, 2016. "Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis," Applied Energy, Elsevier, vol. 183(C), pages 470-477.
    3. Chen, Zhaohui & Li, Yunjia & Lai, Dengguo & Geng, Sulong & Zhou, Qi & Gao, Shiqiu & Xu, Guangwen, 2018. "Coupling coal pyrolysis with char gasification in a multi-stage fluidized bed to co-produce high-quality tar and syngas," Applied Energy, Elsevier, vol. 215(C), pages 348-355.
    4. Liu, Peng & Zhang, Dexiang & Wang, Lanlan & Zhou, Yang & Pan, Tieying & Lu, Xilan, 2016. "The structure and pyrolysis product distribution of lignite from different sedimentary environment," Applied Energy, Elsevier, vol. 163(C), pages 254-262.
    5. Wenning Zhou & Hailong Huo & Qinye Li & Ruifeng Dou & Xunliang Liu, 2019. "An Improved Comprehensive Model of Pyrolysis of Large Coal Particles to Predict Temperature Variation and Volatile Component Yields," Energies, MDPI, vol. 12(5), pages 1-15, March.
    6. Pablo J. Arauzo & María Atienza-Martínez & Javier Ábrego & Maciej P. Olszewski & Zebin Cao & Andrea Kruse, 2020. "Combustion Characteristics of Hydrochar and Pyrochar Derived from Digested Sewage Sludge," Energies, MDPI, vol. 13(16), pages 1-15, August.
    7. Artem A. Medvedev & Daria A. Beldova & Konstantin B. Kalmykov & Alexey V. Kravtsov & Marina A. Tedeeva & Leonid M. Kustov & Sergey F. Dunaev & Alexander L. Kustov, 2022. "Carbon Dioxide Assisted Conversion of Hydrolysis Lignin Catalyzed by Nickel Compounds," Energies, MDPI, vol. 15(18), pages 1-12, September.
    8. Guo, Feihong & He, Yi & Hassanpour, Ali & Gardy, Jabbar & Zhong, Zhaoping, 2020. "Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal," Energy, Elsevier, vol. 197(C).
    9. Song, Weiming & Zhou, Jianan & Li, Yujie & Yang, Jian & Cheng, Rijin, 2021. "New technology for producing high-quality combustible gas by high-temperature reaction of dust-removal coke powder in mixed atmosphere," Energy, Elsevier, vol. 233(C).
    10. Ding, Lu & Dai, Zhenghua & Guo, Qinghua & Yu, Guangsuo, 2017. "Effects of in-situ interactions between steam and coal on pyrolysis and gasification characteristics of pulverized coals and coal water slurry," Applied Energy, Elsevier, vol. 187(C), pages 627-639.
    11. Bu, Changsheng & Gómez-Barea, Alberto & Chen, Xiaoping & Leckner, Bo & Liu, Daoyin & Pallarès, David & Lu, Ping, 2016. "Effect of CO2 on oxy-fuel combustion of coal-char particles in a fluidized bed: Modeling and comparison with the conventional mode of combustion," Applied Energy, Elsevier, vol. 177(C), pages 247-259.
    12. Kartal, Furkan & Dalbudak, Yağmur & Özveren, Uğur, 2023. "Prediction of thermal degradation of biopolymers in biomass under pyrolysis atmosphere by means of machine learning," Renewable Energy, Elsevier, vol. 204(C), pages 774-787.
    13. Chen, Jianbiao & Gao, Shuaifei & Xu, Fang & Xu, Wenhao & Yang, Yuanjiang & Kong, Depeng & Wang, Yinfeng & Yao, Huicong & Chen, Haijun & Zhu, Yuezhao & Mu, Lin, 2022. "Influence of moisture and feedstock form on the pyrolysis behaviors, pyrolytic gas production, and residues micro-structure evolutions of an industrial sludge from a steel production enterprise," Energy, Elsevier, vol. 248(C).
    14. Jana, Kuntal & De, Sudipta, 2015. "Polygeneration using agricultural waste: Thermodynamic and economic feasibility study," Renewable Energy, Elsevier, vol. 74(C), pages 648-660.
    15. Chi, Chung-Cheng & Lin, Ta-Hui, 2013. "Oxy-oil combustion characteristics of an existing furnace," Applied Energy, Elsevier, vol. 102(C), pages 923-930.
    16. Hu, Yukun & Wang, Jihong & Tan, CK & Sun, Chenggong & Liu, Hao, 2018. "Coupling detailed radiation model with process simulation in Aspen Plus: A case study on fluidized bed combustor," Applied Energy, Elsevier, vol. 227(C), pages 168-179.
    17. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    18. Yang, Shiliang & Dong, Ruihan & Du, Yanxiang & Wang, Shuai & Wang, Hua, 2021. "Numerical study of the biomass pyrolysis process in a spouted bed reactor through computational fluid dynamics," Energy, Elsevier, vol. 214(C).
    19. Xu, Hao & Cheng, Shuo & Hungwe, Douglas & Yoshikawa, Kunio & Takahashi, Fumitake, 2022. "Co-pyrolysis coupled with torrefaction enhances hydrocarbons production from rice straw and oil sludge: The effect of torrefaction on co-pyrolysis synergistic behaviors," Applied Energy, Elsevier, vol. 327(C).
    20. Gil, María V. & Riaza, Juan & Álvarez, Lucía & Pevida, Covadonga & Rubiera, Fernando, 2015. "Biomass devolatilization at high temperature under N2 and CO2: Char morphology and reactivity," Energy, Elsevier, vol. 91(C), pages 655-662.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:242:y:2019:i:c:p:732-740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.