IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223021606.html
   My bibliography  Save this article

The influence of inherent minerals on the constant-current electrolysis process of coal-water slurry

Author

Listed:
  • Fan, Yuqiang
  • Guan, Jun
  • He, Demin
  • Hong, Yu
  • Zhang, Qiumin

Abstract

This study investigates the effect of inherent minerals on the constant current electrolysis of coal-water slurry (CWS), which is a potential method for energy-saving and value-added utilization of coal. The products and energy consumption of raw coal and demineralized coal (DM-coal) are compared, and the alkali-soluble and alkali-insoluble components are separated for electrolysis. The results show that minerals increase the yield of water-insoluble acid (WIA) from 30.02% to 60.02% and decrease the unit energy consumption from 2.7 kJ/g to 2.3 kJ/g. Additionally, the inherent minerals also affect the carbon skeleton structure of the products. Compared to DM-coal, the residual coal R4320 from raw coal exhibits lower carbonyl carbons (faC) and smaller sizes of aromatic clusters (Xb). The mechanism underlying the influence of inherent minerals is explored based on the dissolution patterns of minerals and the interaction between oxidizing medium and coal molecules. This study provides insights for energy consumption control and the coupling of anodic CWS oxidation with cathodic carbon dioxide reduction through current modulation.

Suggested Citation

  • Fan, Yuqiang & Guan, Jun & He, Demin & Hong, Yu & Zhang, Qiumin, 2023. "The influence of inherent minerals on the constant-current electrolysis process of coal-water slurry," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223021606
    DOI: 10.1016/j.energy.2023.128766
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223021606
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, Lan & Gong, Xuzhong & Wang, Zhi & Zhao, Lixin & Wang, Yuhua & Wang, Mingyong, 2016. "Insight of anode reaction for CWS (coal water slurry) electrolysis for hydrogen production," Energy, Elsevier, vol. 96(C), pages 372-382.
    2. Liu, Peng & Zhang, Dexiang & Wang, Lanlan & Zhou, Yang & Pan, Tieying & Lu, Xilan, 2016. "The structure and pyrolysis product distribution of lignite from different sedimentary environment," Applied Energy, Elsevier, vol. 163(C), pages 254-262.
    3. Sonibare, Oluwadayo O. & Haeger, Tobias & Foley, Stephen F., 2010. "Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy," Energy, Elsevier, vol. 35(12), pages 5347-5353.
    4. Chen, Shuai & Zhou, Wei & Ding, Yani & Zhao, Guangbo & Gao, Jihui, 2021. "Fe3+-mediated coal-assisted water electrolysis for hydrogen production: Roles of mineral matter and oxygen-containing functional groups in coal," Energy, Elsevier, vol. 220(C).
    5. Zhou, Wei & Chen, Shuai & Meng, Xiaoxiao & Li, Jiayi & Huang, Yuming & Gao, Jihui & Zhao, Guangbo & He, Yong & Qin, Yukun, 2022. "Two-step coal-assisted water electrolysis for energy-saving hydrogen production at cell voltage of 1.2 V with current densities larger than 150 mA/cm2," Energy, Elsevier, vol. 260(C).
    6. Gong, Xuzhong & Wang, Mingyong & Liu, Yang & Wang, Zhi & Guo, Zhancheng, 2014. "Variation with time of cell voltage for coal slurry electrolysis in sulfuric acid," Energy, Elsevier, vol. 65(C), pages 233-239.
    7. Ying, Zhi & Geng, Zhen & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2022. "Improving water electrolysis assisted by anodic biochar oxidation for clean hydrogen production," Energy, Elsevier, vol. 238(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Wei & Chen, Shuai & Meng, Xiaoxiao & Li, Jiayi & Huang, Yuming & Gao, Jihui & Zhao, Guangbo & He, Yong & Qin, Yukun, 2022. "Two-step coal-assisted water electrolysis for energy-saving hydrogen production at cell voltage of 1.2 V with current densities larger than 150 mA/cm2," Energy, Elsevier, vol. 260(C).
    2. Kou, Kaikai & Zhou, Wei & Chen, Shuai & Gao, Jihui, 2021. "Mechanism investigation of carboxyl functional groups catalytic oxidation in coal assisted water electrolysis cell," Energy, Elsevier, vol. 226(C).
    3. Chen, Shuai & Zhou, Wei & Ding, Yani & Zhao, Guangbo & Gao, Jihui, 2021. "Fe3+-mediated coal-assisted water electrolysis for hydrogen production: Roles of mineral matter and oxygen-containing functional groups in coal," Energy, Elsevier, vol. 220(C).
    4. Ying, Zhi & Geng, Zhen & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2022. "Improving water electrolysis assisted by anodic biochar oxidation for clean hydrogen production," Energy, Elsevier, vol. 238(PB).
    5. Huang, Yuming & Zhou, Wei & Xie, Liang & Li, Jiayi & He, Yong & Chen, Shuai & Meng, Xiaoxiao & Gao, Jihui & Qin, Yukun, 2022. "Edge and defect sites in porous activated coke enable highly efficient carbon-assisted water electrolysis for energy-saving hydrogen production," Renewable Energy, Elsevier, vol. 195(C), pages 283-292.
    6. Xin, Lin & An, Mingyu & Feng, Mingze & Li, Kaixuan & Cheng, Weimin & Liu, Weitao & Hu, Xiangming & Wang, Zhigang & Han, Limin, 2021. "Study on pyrolysis characteristics of lump coal in the context of underground coal gasification," Energy, Elsevier, vol. 237(C).
    7. Ju, HyungKuk & Badwal, Sukhvinder & Giddey, Sarbjit, 2018. "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production," Applied Energy, Elsevier, vol. 231(C), pages 502-533.
    8. Cui, Tongmin & Fan, Wenke & Dai, Zhenghua & Guo, Qinghua & Yu, Guangsuo & Wang, Fuchen, 2016. "Variation of the coal chemical structure and determination of the char molecular size at the early stage of rapid pyrolysis," Applied Energy, Elsevier, vol. 179(C), pages 650-659.
    9. Ding, Lu & Dai, Zhenghua & Guo, Qinghua & Yu, Guangsuo, 2017. "Effects of in-situ interactions between steam and coal on pyrolysis and gasification characteristics of pulverized coals and coal water slurry," Applied Energy, Elsevier, vol. 187(C), pages 627-639.
    10. Tao, Meng & Jl, Xie & Xm, Li & Jw, Ma & Yang, Yue, 2020. "Experimental study on the evolutional trend of pore structures and fractal dimension of low-rank coal rich clay subjected to a coupled thermo-hydro-mechanical-chemical environment," Energy, Elsevier, vol. 203(C).
    11. Abunowara, Mustafa & Sufian, Suriati & Bustam, Mohamad Azmi & Eldemerdash, Usama & Suleman, Humbul & Bencini, Roberto & Assiri, Mohammed Ali & Ullah, Sami & Al-Sehemi, Abdullah G., 2020. "Experimental measurements of carbon dioxide, methane and nitrogen high-pressure adsorption properties onto Malaysian coals under various conditions," Energy, Elsevier, vol. 210(C).
    12. Liu, Hongwei & Wang, Yongzhen & Lv, Liang & Liu, Xiao & Wang, Ziqi & Liu, Jun, 2023. "Oxygen-enriched hierarchical porous carbons derived from lignite for high-performance supercapacitors," Energy, Elsevier, vol. 269(C).
    13. Li, Jiuqing & Qin, Yong & Shen, Jian & Chen, Yilin, 2024. "Evolution of carbon nanostructures during coal graphitization: Insights from X-ray diffraction and high-resolution transmission electron microscopy," Energy, Elsevier, vol. 290(C).
    14. Prabhakaran, SP Sathiya & Swaminathan, Ganapathiraman & Joshi, Viraj V., 2022. "Combustion and pyrolysis kinetics of Australian lignite coal and validation by artificial neural networks," Energy, Elsevier, vol. 242(C).
    15. Liu, Peng & Le, Jiawei & Wang, Lanlan & Pan, Tieying & Lu, Xilan & Zhang, Dexiang, 2016. "Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis," Applied Energy, Elsevier, vol. 183(C), pages 470-477.
    16. Zhai, Xiaowei & Ge, Hui & Wang, Tingyan & Shu, Chi-Min & Li, Jun, 2020. "Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal," Energy, Elsevier, vol. 205(C).
    17. Strizhak, Pavel A. & Vershinina, Ksenia Yu., 2017. "Maximum combustion temperature for coal-water slurry containing petrochemicals," Energy, Elsevier, vol. 120(C), pages 34-46.
    18. Liang, Wang & Ning, Xiaojun & Wang, Guangwei & Zhang, Jianliang & Li, Rongpeng & Chang, Weiwei & Wang, Chuan, 2021. "Influence mechanism and kinetic analysis of co-gasification of biomass char and semi-coke," Renewable Energy, Elsevier, vol. 163(C), pages 331-341.
    19. Liu, Peng & Zhang, Dexiang & Wang, Lanlan & Zhou, Yang & Pan, Tieying & Lu, Xilan, 2016. "The structure and pyrolysis product distribution of lignite from different sedimentary environment," Applied Energy, Elsevier, vol. 163(C), pages 254-262.
    20. Xu, Jun & Tang, Hao & Su, Sheng & Liu, Jiawei & Xu, Kai & Qian, Kun & Wang, Yi & Zhou, Yingbiao & Hu, Song & Zhang, Anchao & Xiang, Jun, 2018. "A study of the relationships between coal structures and combustion characteristics: The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals," Applied Energy, Elsevier, vol. 212(C), pages 46-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223021606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.