IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v156y2015icp762-766.html
   My bibliography  Save this article

Application and research on Regenerative High Temperature Air Combustion technology on low-rank coal pyrolysis

Author

Listed:
  • Pei, Pei
  • Wang, Qicheng
  • Wu, Daohong

Abstract

Regenerative High Temperature Air Combustion (RHTAC) technology is composed of circular-ceramic regenerator, burners, small four-way reversing valve and control system. RHTAC technology works by using the regenerator in burners to complete heat exchange between the high-temperature fume exhausted and the combustion air. Based on RHTAC technology, Regenerative Radiant Tube Combustor (RRTC) has been developed, and was adopted by Shenwu Pyrolysis Process (SPP), which is a new pyrolysis technology with the heat-carrier-free rotating bed. SPP was researched and developed to upgrade low-rank coal into the upgraded coal, tar and pyrolyzing gas. Presently, various coals from China and other countries have been conducted, including Lignite and Long flame coal. To understand the function of the RRTCs in SPP, a pilot plant has been constructed and used to investigate the effects of the RRTCs on the fume and pyrolyzer temperature distributions and pyrolyzing products. The results show that low calorific value gas fuel (>700kcal/Nm3) can be used, the heat loss in fume exhausted is low (temp. about 150°C), so thermal efficiency of the RRTC is greatly improved; the RRTCs can realize accurate temperature control and the separation of volatile materials and fume in the pyrolyzer, so as to increase tar yield and improve gas quality. The tar yield is more than 90% of the Gray-King tar yield; the pyrolyzing gas contains high contents of CH4, H2 and CO. Moreover, SPP could solve some technical problems, such as high dust content in coal tar, likely blockage of pipeline and greatly increasing the subsequent tar processing cost.

Suggested Citation

  • Pei, Pei & Wang, Qicheng & Wu, Daohong, 2015. "Application and research on Regenerative High Temperature Air Combustion technology on low-rank coal pyrolysis," Applied Energy, Elsevier, vol. 156(C), pages 762-766.
  • Handle: RePEc:eee:appene:v:156:y:2015:i:c:p:762-766
    DOI: 10.1016/j.apenergy.2015.06.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915008284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.06.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xiaohui & Zheng, Danxing & Guo, Jing & Liu, Jingxiao & Ji, Peijun, 2013. "Energy analysis for low-rank coal based process system to co-produce semicoke, syngas and light oil," Energy, Elsevier, vol. 52(C), pages 279-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zhaohui & Li, Yunjia & Lai, Dengguo & Geng, Sulong & Zhou, Qi & Gao, Shiqiu & Xu, Guangwen, 2018. "Coupling coal pyrolysis with char gasification in a multi-stage fluidized bed to co-produce high-quality tar and syngas," Applied Energy, Elsevier, vol. 215(C), pages 348-355.
    2. Ra, Ho Won & Mun, Tae-Young & Hong, Sung Jun & Chun, Dong Hyun & Lee, Ho Tae & Yoon, Sung Min & Moon, Ji Hong & Park, Sung Jin & Lee, Seok Hyeong & Yang, Jung Hoon & Kim, Jae-Kon & Jung, Heon & Seo, M, 2021. "Indirect coal liquefaction by integrated entrained flow gasification and Rectisol/Fischer–Tropsch processes for producing automobile diesel substitutes," Energy, Elsevier, vol. 219(C).
    3. Liu, Peng & Le, Jiawei & Wang, Lanlan & Pan, Tieying & Lu, Xilan & Zhang, Dexiang, 2016. "Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis," Applied Energy, Elsevier, vol. 183(C), pages 470-477.
    4. Wenning Zhou & Hailong Huo & Qinye Li & Ruifeng Dou & Xunliang Liu, 2019. "An Improved Comprehensive Model of Pyrolysis of Large Coal Particles to Predict Temperature Variation and Volatile Component Yields," Energies, MDPI, vol. 12(5), pages 1-15, March.
    5. Xu, Shipei & Zeng, Xi & Han, Zhennan & Cheng, Jiguang & Wu, Rongcheng & Chen, Zhaohui & Masĕk, Ondřej & Fan, Xianfeng & Xu, Guangwen, 2019. "Quick pyrolysis of a massive coal sample via rapid infrared heating," Applied Energy, Elsevier, vol. 242(C), pages 732-740.
    6. Zhang, Nan & Zhang, Jianliang & Wang, Guangwei & Ning, Xiaojun & Meng, Fanyi & Li, Chuanhui & Ye, Lian & Wang, Chuan, 2022. "Physicochemical characteristics of three-phase products of low-rank coal by hydrothermal carbonization: experimental research and quantum chemical calculation," Energy, Elsevier, vol. 261(PB).
    7. Liu, Peng & Zhang, Dexiang & Wang, Lanlan & Zhou, Yang & Pan, Tieying & Lu, Xilan, 2016. "The structure and pyrolysis product distribution of lignite from different sedimentary environment," Applied Energy, Elsevier, vol. 163(C), pages 254-262.
    8. Du, Xin & Li, Yun, 2019. "Experimental comparison and optimization on granular bed filters with three types of filling schemes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Po-Chih Kuo & Wei Wu, 2014. "Design, Optimization and Energetic Efficiency of Producing Hydrogen-Rich Gas from Biomass Steam Gasification," Energies, MDPI, vol. 8(1), pages 1-17, December.
    2. Jovanović, Marina & Vučićević, Biljana & Turanjanin, Valentina & Živković, Marija & Spasojević, Vuk, 2014. "Investigation of indoor and outdoor air quality of the classrooms at a school in Serbia," Energy, Elsevier, vol. 77(C), pages 42-48.
    3. Liu, Peng & Le, Jiawei & Wang, Lanlan & Pan, Tieying & Lu, Xilan & Zhang, Dexiang, 2016. "Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis," Applied Energy, Elsevier, vol. 183(C), pages 470-477.
    4. Zhang, Yongliang & Jin, Bo & Zou, Xixian & Zhao, Haibo, 2016. "A clean coal utilization technology based on coal pyrolysis and chemical looping with oxygen uncoupling: Principle and experimental validation," Energy, Elsevier, vol. 98(C), pages 181-189.
    5. Qin, Shiyue & Chang, Shiyan, 2017. "Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery," Energy, Elsevier, vol. 141(C), pages 435-450.
    6. Zheng, Danxing & Wu, Zhaohui & Huang, Weijia & Chen, Youhui, 2017. "Energy quality factor of materials conversion and energy quality reference system," Applied Energy, Elsevier, vol. 185(P1), pages 768-778.
    7. Li, Hong & Zhou, Hao & Liu, Kailong & Gao, Xin & Li, Xingang, 2021. "Retrofit application of traditional petroleum chemical technologies to coal chemical industry for sustainable energy-efficiency production," Energy, Elsevier, vol. 218(C).
    8. Chen, Yi-Feng & Su, Sheng & Zhang, Liang-Ping & Jiang, Long & Qing, Meng-Xia & Chi, Huan-Ying & Ling, Peng & Han, Heng-Da & Xu, Kai & Wang, Yi & Hu, Song & Xiang, Jun, 2021. "Insights into evolution mechanism of PAHs in coal thermal conversion: A combined experimental and DFT study," Energy, Elsevier, vol. 222(C).
    9. Bai, Yonghui & Wang, Yulong & Zhu, Shenghua & Li, Fan & Xie, Kechang, 2014. "Structural features and gasification reactivity of coal chars formed in Ar and CO2 atmospheres at elevated pressures," Energy, Elsevier, vol. 74(C), pages 464-470.
    10. Yi, Lan & Feng, Jie & Li, Wen-Ying, 2019. "Evaluation on a combined model for low-rank coal pyrolysis," Energy, Elsevier, vol. 169(C), pages 1012-1021.
    11. Liu, Rongtang & Liu, Ming & Fan, Peipei & Zhao, Yongliang & Yan, Junjie, 2018. "Thermodynamic study on a novel lignite poly-generation system of electricity-gas-tar integrated with pre-drying and pyrolysis," Energy, Elsevier, vol. 165(PB), pages 140-152.
    12. Kun, Zhang & He, Demin & Guan, Jun & Zhang, Qiumin, 2019. "Thermodynamic analysis of chemical looping gasification coupled with lignite pyrolysis," Energy, Elsevier, vol. 166(C), pages 807-818.
    13. Chen, Xiaohui & Zheng, Danxing & Chen, Juan, 2014. "An approach to obtain Heat Integration scheme with higher viability for complex system," Energy, Elsevier, vol. 78(C), pages 720-731.
    14. Hou, Yujie & Wang, Chang'an & Yang, Fu & Zhao, Lin & Gao, Xinyue & Ma, Li & Huang, Xiaole & Duan, Zhonghui & Che, Defu, 2024. "Separation characteristics of low-temperature coal tar containing solid particles by vacuum distillation: Effects of distillation pressure and solid particle content," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:156:y:2015:i:c:p:762-766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.