IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v139y2017icp1030-1039.html
   My bibliography  Save this article

Technical and economic feasibility of the Isopropanol-Acetone-Hydrogen chemical heat pump based on a lab-scale prototype

Author

Listed:
  • Xu, Min
  • Cai, Jun
  • Guo, Jiangfeng
  • Huai, Xiulan
  • Liu, Zhigang
  • Zhang, Hang

Abstract

Chemical heat pump are promising alternatives in waste heat recovery applications. The present paper focuses on the technical and economic feasibility analysis of the Isopropanol-Acetone-Hydrogen Chemical Heat Pump (IAH-CHP) system. A small scale prototype of the IAH-CHP was established. Coefficient of performance (COP), exergy efficiency and entransy efficiency analysis were adopted to evaluate the performance of the IAH-CHP prototype. The stable operation is given with the waste heat temperature of 90 °C and the high-level output temperature of 160 °C. The COP, exergy efficiency and entransy efficiency of the system are up to 24.3%, 42.3% and 29.1%, respectively. Moreover, based on the detailed experimental results of the lab-scale apparatus, a 100 kWth model was built to evaluate economic feasibility of the IAH-CHP. The exergy cost and the thermoeconomic cost based on the structural theory, as well as the payback period were evaluated. The results indicate that the exergy destruction and investment cost of the distillation column is the highest, and the payback period is 5.6 year for the case of the optimal performance. The unit exergy cost of the final exergetic product is 6.56 W/W. The results proved that the IAH-CHP system is efficient in recovering the low-level waste heat.

Suggested Citation

  • Xu, Min & Cai, Jun & Guo, Jiangfeng & Huai, Xiulan & Liu, Zhigang & Zhang, Hang, 2017. "Technical and economic feasibility of the Isopropanol-Acetone-Hydrogen chemical heat pump based on a lab-scale prototype," Energy, Elsevier, vol. 139(C), pages 1030-1039.
  • Handle: RePEc:eee:energy:v:139:y:2017:i:c:p:1030-1039
    DOI: 10.1016/j.energy.2017.08.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217314214
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.08.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ajah, A.N. & Mesbah, A. & Grievink, J. & Herder, P.M. & Falcao, P.W. & Wennekes, S., 2008. "On the robustness, effectiveness and reliability of chemical and mechanical heat pumps for low-temperature heat source district heating: A comparative simulation-based analysis and evaluation," Energy, Elsevier, vol. 33(6), pages 908-929.
    2. Shahandeh, Hossein & Jafari, Mina & Kasiri, Norollah & Ivakpour, Javad, 2015. "Economic optimization of heat pump-assisted distillation columns in methanol-water separation," Energy, Elsevier, vol. 80(C), pages 496-508.
    3. Guo, Jiangfeng & Huai, Xiulan, 2012. "Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory," Energy, Elsevier, vol. 41(1), pages 335-343.
    4. Guo, Jiangfeng & Huai, Xiulan, 2012. "The application of entransy theory in optimization design of Isopropanol–Acetone–Hydrogen chemical heat pump," Energy, Elsevier, vol. 43(1), pages 355-360.
    5. Chung, Yonsoo & Kim, Beom-Jae & Yeo, Yeong-Koo & Song, Hyung Keun, 1997. "Optimal design of a chemical heat pump using the 2-propanol/acetone/hydrogen system," Energy, Elsevier, vol. 22(5), pages 525-536.
    6. Guo, Jiangfeng & Huai, Xiulan & Li, Xunfeng & Xu, Mingtian, 2012. "Performance analysis of Isopropanol–Acetone–Hydrogen chemical heat pump," Applied Energy, Elsevier, vol. 93(C), pages 261-267.
    7. Deng, Jian & Wang, Ruzhu & Wu, Jingyi & Han, Guyong & Wu, Dawei & Li, Sheng, 2008. "Exergy cost analysis of a micro-trigeneration system based on the structural theory of thermoeconomics," Energy, Elsevier, vol. 33(9), pages 1417-1426.
    8. Suphanit, B., 2011. "Optimal heat distribution in the internally heat-integrated distillation column (HIDiC)," Energy, Elsevier, vol. 36(7), pages 4171-4181.
    9. Galanti, Leandro & Massardo, Aristide F., 2011. "Micro gas turbine thermodynamic and economic analysis up to 500kWe size," Applied Energy, Elsevier, vol. 88(12), pages 4795-4802.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Huichao & Zhang, Houcheng, 2023. "Upgrading the low-grade waste heat from alkaline fuel cells via isopropanol-acetone-hydrogen chemical heat pumps," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Jiangfeng & Huai, Xiulan, 2012. "The application of entransy theory in optimization design of Isopropanol–Acetone–Hydrogen chemical heat pump," Energy, Elsevier, vol. 43(1), pages 355-360.
    2. Kiss, Anton A. & Flores Landaeta, Servando J. & Infante Ferreira, Carlos A., 2012. "Towards energy efficient distillation technologies – Making the right choice," Energy, Elsevier, vol. 47(1), pages 531-542.
    3. Khalili, N. & Kasiri, N. & Ivakpour, J. & Khalili-Garakani, A. & Khanof, M.H., 2020. "Optimal configuration of ternary distillation columns using heat integration with external heat exchangers," Energy, Elsevier, vol. 191(C).
    4. Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.
    5. Zhu, Huichao & Zhang, Houcheng, 2023. "Upgrading the low-grade waste heat from alkaline fuel cells via isopropanol-acetone-hydrogen chemical heat pumps," Energy, Elsevier, vol. 265(C).
    6. Tereshchenko, Tymofii & Nord, Natasa, 2016. "Energy planning of district heating for future building stock based on renewable energies and increasing supply flexibility," Energy, Elsevier, vol. 112(C), pages 1227-1244.
    7. Guo, Jiangfeng & Huai, Xiulan, 2012. "Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory," Energy, Elsevier, vol. 41(1), pages 335-343.
    8. Xiao, Gang & Yang, Tianfeng & Liu, Huanlei & Ni, Dong & Ferrari, Mario Luigi & Li, Mingchun & Luo, Zhongyang & Cen, Kefa & Ni, Mingjiang, 2017. "Recuperators for micro gas turbines: A review," Applied Energy, Elsevier, vol. 197(C), pages 83-99.
    9. Mastronardo, E. & Bonaccorsi, L. & Kato, Y. & Piperopoulos, E. & Milone, C., 2016. "Efficiency improvement of heat storage materials for MgO/H2O/Mg(OH)2 chemical heat pumps," Applied Energy, Elsevier, vol. 162(C), pages 31-39.
    10. Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Mathematical modeling and experimental verification of an absorption chiller including three dimensional temperature and concentration distributions," Applied Energy, Elsevier, vol. 106(C), pages 232-242.
    11. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    12. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    13. Verstraete, Dries & Bowkett, Carlos, 2015. "Impact of heat transfer on the performance of micro gas turbines," Applied Energy, Elsevier, vol. 138(C), pages 445-449.
    14. Kiran, Bandaru & Jana, Amiya K. & Samanta, Amar Nath, 2012. "A novel intensified heat integration in multicomponent distillation," Energy, Elsevier, vol. 41(1), pages 443-453.
    15. Shahandeh, H. & Ivakpour, J. & Kasiri, N., 2014. "Internal and external HIDiCs (heat-integrated distillation columns) optimization by genetic algorithm," Energy, Elsevier, vol. 64(C), pages 875-886.
    16. Wang, Zefeng & Han, Wei & Zhang, Na & Liu, Meng & Jin, Hongguang, 2017. "Exergy cost allocation method based on energy level (ECAEL) for a CCHP system," Energy, Elsevier, vol. 134(C), pages 240-247.
    17. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    18. Privat, Romain & Qian, Jun-Wei & Alonso, Dominique & Jaubert, Jean-Noël, 2013. "Quest for an efficient binary working mixture for an absorption-demixing heat transformer," Energy, Elsevier, vol. 55(C), pages 594-609.
    19. Rana, Uttam & Chakraborty, Suman & Som, S.K., 2014. "Thermodynamics of premixed combustion in a heat recirculating micro combustor," Energy, Elsevier, vol. 68(C), pages 510-518.
    20. Jayasekara, Saliya & Halgamuge, Saman K., 2014. "A combined effect absorption chiller for enhanced performance of combined cooling heating and power systems," Applied Energy, Elsevier, vol. 127(C), pages 239-248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:139:y:2017:i:c:p:1030-1039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.