IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9349-d999132.html
   My bibliography  Save this article

The Impact of Baffle Geometry in the PCM Heat Storage Unit on the Charging Process with High and Low Water Streams

Author

Listed:
  • Beata Pytlik

    (Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

  • Daniel Smykowski

    (Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

  • Piotr Szulc

    (Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

Abstract

This paper presents the effect of baffle geometry on the charging process of a low-temperature heat storage unit. Four different geometry variants were considered for this purpose. Each of them was simulated and the results were compared. The following parameters were selected as comparison criteria: the charging time of the heat storage unit, the change in the liquid and solid fractions of the phase change material, and the change in its temperature over time. The analysis showed that, independent from the heat transfer fluid velocity, the use of baffles did not significantly affect the charging time. Furthermore, the application of baffles of all studied types did not bring an essential decrease in charging time. It was found that the optimal solution was to use the simplest construction. Tuning of the HTF flow by the use of baffles is applicable to shell and tube heat exchangers; however, it adds no significant effects in the case of heat storage units of the proposed design. The abovementioned effect has been explained by the heat flux analysis, which shows that the heat transfer in the PCM is radically less intense, when comparing to the working fluid. Therefore, it is expected that enhancing the heat transfer between HTF and PCM material is possible by modifying the PCM–side design.

Suggested Citation

  • Beata Pytlik & Daniel Smykowski & Piotr Szulc, 2022. "The Impact of Baffle Geometry in the PCM Heat Storage Unit on the Charging Process with High and Low Water Streams," Energies, MDPI, vol. 15(24), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9349-:d:999132
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9349/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9349/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernandes, D. & Pitié, F. & Cáceres, G. & Baeyens, J., 2012. "Thermal energy storage: “How previous findings determine current research priorities”," Energy, Elsevier, vol. 39(1), pages 246-257.
    2. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    3. Sindu Daniarta & Piotr Kolasiński & Barbara Rogosz, 2022. "Waste Heat Recovery in Automotive Paint Shop via Organic Rankine Cycle and Thermal Energy Storage System—Selected Thermodynamic Issues," Energies, MDPI, vol. 15(6), pages 1-18, March.
    4. Juan Zhao & Junmei Gao & Junhui Liao & Botao Zhou & Yifei Bai & Tianwei Qiang, 2022. "An Experimental Study of the Heat Storage and the Discharge Performance and an Economic Performance Analysis of a Flat Plate Phase Change Material (PCM) Storage Tank," Energies, MDPI, vol. 15(11), pages 1-17, May.
    5. Halil Bayram & Gökhan Sevilgen, 2017. "Correction: Halil, B.; Gökhan, S. Numerical Investigation of the Effect of Variable Baffle Spacing on the Thermal Performance of a Shell and Tube Heat Exchanger. Energies 2017, 10 , 1156," Energies, MDPI, vol. 10(12), pages 1-1, December.
    6. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    7. Matthias Eydner & Lu Wan & Tobias Henzler & Konstantinos Stergiaropoulos, 2022. "Real-Time Grid Signal-Based Energy Flexibility of Heating Generation: A Methodology for Optimal Scheduling of Stratified Storage Tanks," Energies, MDPI, vol. 15(5), pages 1-31, February.
    8. Khaireldin Faraj & Mahmoud Khaled & Jalal Faraj & Farouk Hachem & Cathy Castelain, 2022. "A Summary Review on Experimental Studies for PCM Building Applications: Towards Advanced Modular Prototype," Energies, MDPI, vol. 15(4), pages 1-43, February.
    9. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    10. Halil Bayram & Gökhan Sevilgen, 2017. "Numerical Investigation of the Effect of Variable Baffle Spacing on the Thermal Performance of a Shell and Tube Heat Exchanger," Energies, MDPI, vol. 10(8), pages 1-19, August.
    11. Aadmi, Moussa & Karkri, Mustapha & El Hammouti, Mimoun, 2014. "Heat transfer characteristics of thermal energy storage of a composite phase change materials: Numerical and experimental investigations," Energy, Elsevier, vol. 72(C), pages 381-392.
    12. Pereira, Diogo Santos & Marques, António Cardoso & Fuinhas, José Alberto, 2019. "Are renewables affecting income distribution and increasing the risk of household poverty?," Energy, Elsevier, vol. 170(C), pages 791-803.
    13. Lixi Zhang & Zhengyang Zhang & Hui Yin, 2022. "Comprehensive Study on Melting Process of Phase Change Material by Using Paraffin Coupled Finned Heating Plate for Heat Transfer Enhancement," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chin, Hon Huin & Wang, Bohong & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Zeng, Min & Wang, Qiu-Wang, 2020. "Long-term investment and maintenance planning for heat exchanger network retrofit," Applied Energy, Elsevier, vol. 279(C).
    2. Xiao, X. & Zhang, P., 2015. "Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part I – Charging process," Energy, Elsevier, vol. 79(C), pages 337-350.
    3. Wang, Lu & Guo, Leihong & Ren, Jianlin & Kong, Xiangfei, 2022. "Using of heat thermal storage of PCM and solar energy for distributed clean building heating: A multi-level scale-up research," Applied Energy, Elsevier, vol. 321(C).
    4. Zhao, B.C. & Wang, R.Z., 2019. "Perspectives for short-term thermal energy storage using salt hydrates for building heating," Energy, Elsevier, vol. 189(C).
    5. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    6. Qin, Zhen & Ji, Chenzhen & Low, Zheng Hua & Tong, Wei & Wu, Chenlong & Duan, Fei, 2022. "Geometry effect of phase change material container on waste heat recovery enhancement," Applied Energy, Elsevier, vol. 327(C).
    7. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    8. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    10. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Yang, Sheng & Shao, Xue-Feng & Luo, Jia-Hao & Baghaei Oskouei, Seyedmohsen & Bayer, Özgür & Fan, Li-Wu, 2023. "A novel cascade latent heat thermal energy storage system consisting of erythritol and paraffin wax for deep recovery of medium-temperature industrial waste heat," Energy, Elsevier, vol. 265(C).
    12. Shaikh Zishan & Altaf Hossain Molla & Haroon Rashid & Kok Hoe Wong & Ahmad Fazlizan & Molla Shahadat Hossain Lipu & Mohd Tariq & Omar Mutab Alsalami & Mahidur R. Sarker, 2023. "Comprehensive Analysis of Kinetic Energy Recovery Systems for Efficient Energy Harnessing from Unnaturally Generated Wind Sources," Sustainability, MDPI, vol. 15(21), pages 1-18, October.
    13. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    14. Zhang, Yuang & Wang, Lingjuan & Tang, Bingtao & Lu, Rongwen & Zhang, Shufen, 2016. "Form-stable phase change materials with high phase change enthalpy from the composite of paraffin and cross-linking phase change structure," Applied Energy, Elsevier, vol. 184(C), pages 241-246.
    15. Tang, Yong & Wang, Zhichao & Zhou, Jinzhi & Zeng, Chao & Lyu, Weihua & Lu, Lin & Yuan, Yanping, 2024. "Experimental study on the performance of packed-bed latent thermal energy storage system employing spherical capsules with hollow channels," Energy, Elsevier, vol. 293(C).
    16. Hongyu Wang & Xiaolei Wang & Apurbo Sarkar & Lu Qian, 2021. "Evaluating the Impacts of Smallholder Farmer’s Participation in Modern Agricultural Value Chain Tactics for Facilitating Poverty Alleviation—A Case Study of Kiwifruit Industry in Shaanxi, China," Agriculture, MDPI, vol. 11(5), pages 1-19, May.
    17. Fritz, M. & Plötz, P. & Schebek, L., 2022. "A technical and economical comparison of excess heat transport technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Xia, Xiaoxia & Liu, Zhipeng & Wang, Zhiqi & Sun, Tong & Zhang, Hualong & Zhang, Sifeng, 2023. "Thermo-economic-environmental optimization design of dual-loop organic Rankine cycle under fluctuating heat source temperature," Energy, Elsevier, vol. 264(C).
    19. Trevisan, Silvia & Wang, Wujun & Guedez, Rafael & Laumert, Björn, 2022. "Experimental evaluation of an innovative radial-flow high-temperature packed bed thermal energy storage," Applied Energy, Elsevier, vol. 311(C).
    20. Yang, Sheng & Zhang, Lu & Xie, Nan & Gu, Zhaohui & Liu, Zhiqiang, 2021. "Thermodynamic analysis of a semi-lean solution process for energy saving via rectisol wash technology," Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9349-:d:999132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.