IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v28y2003i14p1479-1493.html
   My bibliography  Save this article

Efficiencies of CaO/H2O/Ca(OH)2 chemical heat pump for heat storing and heating/cooling

Author

Listed:
  • Ogura, Hironao
  • Yamamoto, Tetsuya
  • Kage, Hiroyuki

Abstract

In order to save energy and decrease environmental impacts of thermal energy utilization systems, a CaO/H2O/Ca(OH)2 chemical heat pump (CHP) can be used for high-density heat storage and the cooling/heating functions. In this paper, the performance of the CHP for distinctive functions was examined in comparison with that of the other heat pumps based on the authors’ experimental and theoretical studies over ten years on the CaO/H2O/Ca(OH)2 CHPs. As a result, the CaO/H2O/Ca(OH)2 CHPs are found to work more efficiently than other types of heat pumps for wider operating temperature ranges in appropriate heat source conditions.

Suggested Citation

  • Ogura, Hironao & Yamamoto, Tetsuya & Kage, Hiroyuki, 2003. "Efficiencies of CaO/H2O/Ca(OH)2 chemical heat pump for heat storing and heating/cooling," Energy, Elsevier, vol. 28(14), pages 1479-1493.
  • Handle: RePEc:eee:energy:v:28:y:2003:i:14:p:1479-1493
    DOI: 10.1016/S0360-5442(03)00119-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544203001191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(03)00119-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    2. Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.
    3. Nagel, T. & Shao, H. & Singh, A.K. & Watanabe, N. & Roßkopf, C. & Linder, M. & Wörner, A. & Kolditz, O., 2013. "Non-equilibrium thermochemical heat storage in porous media: Part 1 – Conceptual model," Energy, Elsevier, vol. 60(C), pages 254-270.
    4. Yawen Ren & Hironao Ogura, 2023. "Dynamic Simulations on Enhanced Heat Recovery Using Heat Exchange PCM Fluid for Solar Collector," Energies, MDPI, vol. 16(7), pages 1-18, March.
    5. Yan, T. & Wang, R.Z. & Li, T.X. & Wang, L.W. & Fred, Ishugah T., 2015. "A review of promising candidate reactions for chemical heat storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 13-31.
    6. Dizaji, Hossein Beidaghy & Hosseini, Hannaneh, 2018. "A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 9-26.
    7. Shkatulov, Alexandr & Aristov, Yuri, 2015. "Modification of magnesium and calcium hydroxides with salts: An efficient way to advanced materials for storage of middle-temperature heat," Energy, Elsevier, vol. 85(C), pages 667-676.
    8. Mastronardo, E. & Bonaccorsi, L. & Kato, Y. & Piperopoulos, E. & Milone, C., 2016. "Efficiency improvement of heat storage materials for MgO/H2O/Mg(OH)2 chemical heat pumps," Applied Energy, Elsevier, vol. 162(C), pages 31-39.
    9. Shao, H. & Nagel, T. & Roßkopf, C. & Linder, M. & Wörner, A. & Kolditz, O., 2013. "Non-equilibrium thermo-chemical heat storage in porous media: Part 2 – A 1D computational model for a calcium hydroxide reaction system," Energy, Elsevier, vol. 60(C), pages 271-282.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:28:y:2003:i:14:p:1479-1493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.