IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v93y2012icp261-267.html
   My bibliography  Save this article

Performance analysis of Isopropanol–Acetone–Hydrogen chemical heat pump

Author

Listed:
  • Guo, Jiangfeng
  • Huai, Xiulan
  • Li, Xunfeng
  • Xu, Mingtian

Abstract

The performance of an Isopropanol–Acetone–Hydrogen (IAH) chemical heat pump system is investigated in terms of enthalpy efficiency (COP) and exergy efficiency, in which the exothermic and endothermic reactions take place in the gas phase. The increase of reflux ratio, temperature of endothermic reaction and temperature of exothermic reaction reduces the performance of the heat pump when the other operating parameters remain unchanged. However, the performance of the IAH chemical heat pump improves with the increase of the ratio of molar quantity of hydrogen to that of acetone in the entry of exothermic reactor and the number of heat transfer units of regenerator. Generally, a better performance of the chemical heat pump corresponds to a larger number of trays in the distillation column. The performance of the system can be improved significantly after multi-parameter optimization design. The coefficient of performance (COP) pays more attention to the heat released from the exothermic reactor, while the exergy efficiency takes into consideration of both heat released from the exothermic reactor and temperature of exothermic reaction.

Suggested Citation

  • Guo, Jiangfeng & Huai, Xiulan & Li, Xunfeng & Xu, Mingtian, 2012. "Performance analysis of Isopropanol–Acetone–Hydrogen chemical heat pump," Applied Energy, Elsevier, vol. 93(C), pages 261-267.
  • Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:261-267
    DOI: 10.1016/j.apenergy.2011.12.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911008762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.12.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chung, Yonsoo & Kim, Beom-Jae & Yeo, Yeong-Koo & Song, Hyung Keun, 1997. "Optimal design of a chemical heat pump using the 2-propanol/acetone/hydrogen system," Energy, Elsevier, vol. 22(5), pages 525-536.
    2. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    3. Demir, Hasan & Mobedi, Moghtada & Ülkü, Semra, 2008. "A review on adsorption heat pump: Problems and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2381-2403, December.
    4. Guo, Jiangfeng & Xu, Mingtian & Cheng, Lin, 2009. "The application of field synergy number in shell-and-tube heat exchanger optimization design," Applied Energy, Elsevier, vol. 86(10), pages 2079-2087, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jayasekara, Saliya & Halgamuge, Saman K., 2014. "A combined effect absorption chiller for enhanced performance of combined cooling heating and power systems," Applied Energy, Elsevier, vol. 127(C), pages 239-248.
    2. Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Mathematical modeling and experimental verification of an absorption chiller including three dimensional temperature and concentration distributions," Applied Energy, Elsevier, vol. 106(C), pages 232-242.
    3. Xu, Min & Cai, Jun & Guo, Jiangfeng & Huai, Xiulan & Liu, Zhigang & Zhang, Hang, 2017. "Technical and economic feasibility of the Isopropanol-Acetone-Hydrogen chemical heat pump based on a lab-scale prototype," Energy, Elsevier, vol. 139(C), pages 1030-1039.
    4. Zhu, Huichao & Zhang, Houcheng, 2023. "Upgrading the low-grade waste heat from alkaline fuel cells via isopropanol-acetone-hydrogen chemical heat pumps," Energy, Elsevier, vol. 265(C).
    5. Guo, Jiangfeng & Huai, Xiulan, 2012. "Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory," Energy, Elsevier, vol. 41(1), pages 335-343.
    6. Mastronardo, E. & Bonaccorsi, L. & Kato, Y. & Piperopoulos, E. & Milone, C., 2016. "Efficiency improvement of heat storage materials for MgO/H2O/Mg(OH)2 chemical heat pumps," Applied Energy, Elsevier, vol. 162(C), pages 31-39.
    7. Guo, Jiangfeng & Huai, Xiulan, 2012. "The application of entransy theory in optimization design of Isopropanol–Acetone–Hydrogen chemical heat pump," Energy, Elsevier, vol. 43(1), pages 355-360.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Jiangfeng & Huai, Xiulan, 2012. "Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory," Energy, Elsevier, vol. 41(1), pages 335-343.
    2. Guo, Jiangfeng & Huai, Xiulan, 2012. "The application of entransy theory in optimization design of Isopropanol–Acetone–Hydrogen chemical heat pump," Energy, Elsevier, vol. 43(1), pages 355-360.
    3. Zhu, Huichao & Zhang, Houcheng, 2023. "Upgrading the low-grade waste heat from alkaline fuel cells via isopropanol-acetone-hydrogen chemical heat pumps," Energy, Elsevier, vol. 265(C).
    4. Tereshchenko, Tymofii & Nord, Natasa, 2016. "Energy planning of district heating for future building stock based on renewable energies and increasing supply flexibility," Energy, Elsevier, vol. 112(C), pages 1227-1244.
    5. Laskowski, Rafał & Smyk, Adam & Lewandowski, Janusz & Rusowicz, Artur & Grzebielec, Andrzej, 2016. "Selecting the cooling water mass flow rate for a power plant under variable load with entropy generation rate minimization," Energy, Elsevier, vol. 107(C), pages 725-733.
    6. Wang, Zhe & Li, Yanzhong, 2016. "A combined method for surface selection and layer pattern optimization of a multistream plate-fin heat exchanger," Applied Energy, Elsevier, vol. 165(C), pages 815-827.
    7. Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
    8. Stinner, Sebastian & Schlösser, Tim & Huchtemann, Kristian & Müller, Dirk & Monti, Antonello, 2017. "Primary energy evaluation of heat pumps considering dynamic boundary conditions in the energy system," Energy, Elsevier, vol. 138(C), pages 60-78.
    9. Xu, Min & Cai, Jun & Guo, Jiangfeng & Huai, Xiulan & Liu, Zhigang & Zhang, Hang, 2017. "Technical and economic feasibility of the Isopropanol-Acetone-Hydrogen chemical heat pump based on a lab-scale prototype," Energy, Elsevier, vol. 139(C), pages 1030-1039.
    10. Yanjuan Yu & Hongkun Chen & Lei Chen, 2018. "Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System," Energies, MDPI, vol. 11(2), pages 1-16, January.
    11. Kirkerud, Jon Gustav & Trømborg, Erik & Bolkesjø, Torjus Folsland, 2016. "Impacts of electricity grid tariffs on flexible use of electricity to heat generation," Energy, Elsevier, vol. 115(P3), pages 1679-1687.
    12. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    13. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    14. Ma, Huan & Chen, Qun & Hu, Bo & Sun, Qinhan & Li, Tie & Wang, Shunjiang, 2021. "A compact model to coordinate flexibility and efficiency for decomposed scheduling of integrated energy system," Applied Energy, Elsevier, vol. 285(C).
    15. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Integrated heat and power dispatch truly utilizing thermal inertia of district heating network for wind power integration," Applied Energy, Elsevier, vol. 211(C), pages 865-874.
    16. Patteeuw, Dieter & Reynders, Glenn & Bruninx, Kenneth & Protopapadaki, Christina & Delarue, Erik & D’haeseleer, William & Saelens, Dirk & Helsen, Lieve, 2015. "CO2-abatement cost of residential heat pumps with active demand response: demand- and supply-side effects," Applied Energy, Elsevier, vol. 156(C), pages 490-501.
    17. Kiss, Anton A. & Flores Landaeta, Servando J. & Infante Ferreira, Carlos A., 2012. "Towards energy efficient distillation technologies – Making the right choice," Energy, Elsevier, vol. 47(1), pages 531-542.
    18. Sharafian, Amir & Bahrami, Majid, 2015. "Critical analysis of thermodynamic cycle modeling of adsorption cooling systems for light-duty vehicle air conditioning applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 857-869.
    19. Wu, Xiao & Wang, Meihong & Lee, Kwang Y., 2020. "Flexible operation of supercritical coal-fired power plant integrated with solvent-based CO2 capture through collaborative predictive control," Energy, Elsevier, vol. 206(C).
    20. Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu, 2018. "Improving wind power integration by a novel short-term dispatch model based on free heat storage and exhaust heat recycling," Energy, Elsevier, vol. 160(C), pages 940-953.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:261-267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.