IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v109y2013icp239-253.html
   My bibliography  Save this article

Intelligent optimized wind resource assessment and wind turbines selection in Huitengxile of Inner Mongolia, China

Author

Listed:
  • Dong, Yao
  • Wang, Jianzhou
  • Jiang, He
  • Shi, Xiaomeng

Abstract

The exploration of wind energy has become one of the most significant aims for countries all around the world. This is due to its low impact on the environment and its sustainable development. Therefore, it is very important to develop an effective and scientific way to evaluate wind resource potential and so that suitable wind turbines can be chosen. In this study, the 4-times daily wind speed data for the past 63years in Huitengxile of Inner Mongolia in China was collected first to do mutation tests using Sliding T-test and Sliding F-test. The test results indicated that the wind speeds exhibited a significant change in the mean value and a big variation in variance. Secondly, in order to improve the assessment accuracy, three intelligent optimization algorithms were applied to estimate Weibull’s parameters, including Particle Swarm Optimization (PSO), Differential Evolution (DE) and Genetic Algorithm (GA). Finally, some new criteria, such as matching index, turbine cost index and the integrated matching index, were proposed in order to choose the most fitting wind turbine in accordance with the local environment and economic cost.

Suggested Citation

  • Dong, Yao & Wang, Jianzhou & Jiang, He & Shi, Xiaomeng, 2013. "Intelligent optimized wind resource assessment and wind turbines selection in Huitengxile of Inner Mongolia, China," Applied Energy, Elsevier, vol. 109(C), pages 239-253.
  • Handle: RePEc:eee:appene:v:109:y:2013:i:c:p:239-253
    DOI: 10.1016/j.apenergy.2013.04.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191300322X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.04.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jowder, Fawzi A.L., 2009. "Wind power analysis and site matching of wind turbine generators in Kingdom of Bahrain," Applied Energy, Elsevier, vol. 86(4), pages 538-545, April.
    2. AlRashidi, M.R. & EL-Naggar, K.M., 2010. "Long term electric load forecasting based on particle swarm optimization," Applied Energy, Elsevier, vol. 87(1), pages 320-326, January.
    3. Fyrippis, Ioannis & Axaopoulos, Petros J. & Panayiotou, Gregoris, 2010. "Wind energy potential assessment in Naxos Island, Greece," Applied Energy, Elsevier, vol. 87(2), pages 577-586, February.
    4. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    5. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    6. Ucar, Aynur & Balo, Figen, 2009. "Evaluation of wind energy potential and electricity generation at six locations in Turkey," Applied Energy, Elsevier, vol. 86(10), pages 1864-1872, October.
    7. Dahmouni, A.W. & Salah, M. Ben & Askri, F. & Kerkeni, C. & Nasrallah, S. Ben, 2010. "Wind energy in the Gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1303-1311, May.
    8. Yu, James & Ji, Fuxing & Zhang, Ling & Chen, Yushou, 2009. "An over painted oriental arts: Evaluation of the development of the Chinese renewable energy market using the wind power market as a model," Energy Policy, Elsevier, vol. 37(12), pages 5221-5225, December.
    9. Wang, Jianjun & Li, Li & Niu, Dongxiao & Tan, Zhongfu, 2012. "An annual load forecasting model based on support vector regression with differential evolution algorithm," Applied Energy, Elsevier, vol. 94(C), pages 65-70.
    10. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    11. Varun & Siddhartha, 2010. "Thermal performance optimization of a flat plate solar air heater using genetic algorithm," Applied Energy, Elsevier, vol. 87(5), pages 1793-1799, May.
    12. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.
    13. Gökçek, Murat & Genç, Mustafa Serdar, 2009. "Evaluation of electricity generation and energy cost of wind energy conversion systems (WECSs) in Central Turkey," Applied Energy, Elsevier, vol. 86(12), pages 2731-2739, December.
    14. Bekele, Getachew & Palm, Björn, 2009. "Wind energy potential assessment at four typical locations in Ethiopia," Applied Energy, Elsevier, vol. 86(3), pages 388-396, March.
    15. Akdag, S.A. & Bagiorgas, H.S. & Mihalakakou, G., 2010. "Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterranean," Applied Energy, Elsevier, vol. 87(8), pages 2566-2573, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Tian-Pau & Ko, Hong-Hsi & Liu, Feng-Jiao & Chen, Pai-Hsun & Chang, Ying-Pin & Liang, Ying-Hsin & Jang, Horng-Yuan & Lin, Tsung-Chi & Chen, Yi-Hwa, 2012. "Fractal dimension of wind speed time series," Applied Energy, Elsevier, vol. 93(C), pages 742-749.
    2. Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Cheng, Shih-Ping & Sun, Li-Chung & Kuo, Shye-Chorng, 2014. "Comparative analysis on power curve models of wind turbine generator in estimating capacity factor," Energy, Elsevier, vol. 73(C), pages 88-95.
    3. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    4. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.
    5. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    6. Jiang, He & Wang, Jianzhou & Dong, Yao & Lu, Haiyan, 2015. "Comprehensive assessment of wind resources and the low-carbon economy: An empirical study in the Alxa and Xilin Gol Leagues of inner Mongolia, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1304-1319.
    7. Usta, Ilhan, 2016. "An innovative estimation method regarding Weibull parameters for wind energy applications," Energy, Elsevier, vol. 106(C), pages 301-314.
    8. Soukissian, Takvor H. & Karathanasi, Flora E., 2017. "On the selection of bivariate parametric models for wind data," Applied Energy, Elsevier, vol. 188(C), pages 280-304.
    9. Jung, Sungmoon & Arda Vanli, O. & Kwon, Soon-Duck, 2013. "Wind energy potential assessment considering the uncertainties due to limited data," Applied Energy, Elsevier, vol. 102(C), pages 1492-1503.
    10. Sergei Kolesnik & Yossi Rabinovitz & Michael Byalsky & Asher Yahalom & Alon Kuperman, 2023. "Assessment of Wind Speed Statistics in Samaria Region and Potential Energy Production," Energies, MDPI, vol. 16(9), pages 1-35, May.
    11. Akdag, Seyit Ahmet & Güler, Önder, 2010. "Evaluation of wind energy investment interest and electricity generation cost analysis for Turkey," Applied Energy, Elsevier, vol. 87(8), pages 2574-2580, August.
    12. Mostafaeipour, Ali & Jadidi, Mohsen & Mohammadi, Kasra & Sedaghat, Ahmad, 2014. "An analysis of wind energy potential and economic evaluation in Zahedan, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 641-650.
    13. Deep, Sneh & Sarkar, Arnab & Ghawat, Mayur & Rajak, Manoj Kumar, 2020. "Estimation of the wind energy potential for coastal locations in India using the Weibull model," Renewable Energy, Elsevier, vol. 161(C), pages 319-339.
    14. Zhao, Xuejing & Wang, Chen & Su, Jinxia & Wang, Jianzhou, 2019. "Research and application based on the swarm intelligence algorithm and artificial intelligence for wind farm decision system," Renewable Energy, Elsevier, vol. 134(C), pages 681-697.
    15. Jiang, Haiyan & Wang, Jianzhou & Wu, Jie & Geng, Wei, 2017. "Comparison of numerical methods and metaheuristic optimization algorithms for estimating parameters for wind energy potential assessment in low wind regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1199-1217.
    16. Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2019. "Assessment of Wind Power Potential and Economic Analysis at Hyderabad in Pakistan: Powering to Local Communities Using Wind Power," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    17. Ohunakin, O.S. & Adaramola, M.S. & Oyewola, O.M., 2011. "Wind energy evaluation for electricity generation using WECS in seven selected locations in Nigeria," Applied Energy, Elsevier, vol. 88(9), pages 3197-3206.
    18. Soukissian, Takvor, 2013. "Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution," Applied Energy, Elsevier, vol. 111(C), pages 982-1000.
    19. Jin, Jingliang & Zhou, Dequn & Zhou, Peng & Miao, Zhuang, 2014. "Environmental/economic power dispatch with wind power," Renewable Energy, Elsevier, vol. 71(C), pages 234-242.
    20. Gugliani, Gaurav Kumar & Sarkar, Arnab & Ley, Christophe & Matsagar, Vasant, 2021. "Identification of optimum wind turbine parameters for varying wind climates using a novel month-based turbine performance index," Renewable Energy, Elsevier, vol. 171(C), pages 902-914.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:109:y:2013:i:c:p:239-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.