IDEAS home Printed from https://ideas.repec.org/a/gam/jchals/v8y2017i1p9-d93741.html
   My bibliography  Save this article

Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications

Author

Listed:
  • Nadia Belmonte

    (Department of Chemistry, Centre for Nanostructured Interfaces and Surfaces (NIS), University of Turin, 10125 Torino, Italy)

  • Carlo Luetto

    (Tecnodelta Srl., 10034 Chivasso, Italy)

  • Stefano Staulo

    (Stones Sas., 10093 Collegno, Italy)

  • Paola Rizzi

    (Department of Chemistry, Centre for Nanostructured Interfaces and Surfaces (NIS), University of Turin, 10125 Torino, Italy)

  • Marcello Baricco

    (Department of Chemistry, Centre for Nanostructured Interfaces and Surfaces (NIS), University of Turin, 10125 Torino, Italy)

Abstract

In this paper, hydrogen coupled with fuel cells and lithium-ion batteries are considered as alternative energy storage methods. Their application on a stationary system (i.e., energy storage for a family house) and a mobile system (i.e., an unmanned aerial vehicle) will be investigated. The stationary systems, designed for off-grid applications, were sized for photovoltaic energy production in the area of Turin, Italy, to provide daily energy of 10.25 kWh. The mobile systems, to be used for high crane inspection, were sized to have a flying range of 120 min, one being equipped with a Li-ion battery and the other with a proton-exchange membrane fuel cell. The systems were compared from an economical point of view and a life cycle assessment was performed to identify the main contributors to the environmental impact. From a commercial point of view, the fuel cell and the electrolyzer, being niche products, result in being more expensive with respect to the Li-ion batteries. On the other hand, the life cycle assessment (LCA) results show the lower burdens of both technologies.

Suggested Citation

  • Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
  • Handle: RePEc:gam:jchals:v:8:y:2017:i:1:p:9-:d:93741
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2078-1547/8/1/9/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2078-1547/8/1/9/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gago, J. & Douthe, C. & Coopman, R.E. & Gallego, P.P. & Ribas-Carbo, M. & Flexas, J. & Escalona, J. & Medrano, H., 2015. "UAVs challenge to assess water stress for sustainable agriculture," Agricultural Water Management, Elsevier, vol. 153(C), pages 9-19.
    2. Bartolozzi, I. & Rizzi, F. & Frey, M., 2013. "Comparison between hydrogen and electric vehicles by life cycle assessment: A case study in Tuscany, Italy," Applied Energy, Elsevier, vol. 101(C), pages 103-111.
    3. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
    4. Silva, S.B. & Severino, M.M. & de Oliveira, M.A.G., 2013. "A stand-alone hybrid photovoltaic, fuel cell and battery system: A case study of Tocantins, Brazil," Renewable Energy, Elsevier, vol. 57(C), pages 384-389.
    5. Simons, Andrew & Bauer, Christian, 2015. "A life-cycle perspective on automotive fuel cells," Applied Energy, Elsevier, vol. 157(C), pages 884-896.
    6. Khan, Faisal I. & Hawboldt, Kelly & Iqbal, M.T., 2005. "Life Cycle Analysis of wind–fuel cell integrated system," Renewable Energy, Elsevier, vol. 30(2), pages 157-177.
    7. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2015. "Environmental impacts of microgeneration: Integrating solar PV, Stirling engine CHP and battery storage," Applied Energy, Elsevier, vol. 139(C), pages 245-259.
    8. Petrillo, Antonella & De Felice, Fabio & Jannelli, Elio & Autorino, Claudio & Minutillo, Mariagiovanna & Lavadera, Antonio Lubrano, 2016. "Life cycle assessment (LCA) and life cycle cost (LCC) analysis model for a stand-alone hybrid renewable energy system," Renewable Energy, Elsevier, vol. 95(C), pages 337-355.
    9. Kabakian, V. & McManus, M.C. & Harajli, H., 2015. "Attributional life cycle assessment of mounted 1.8kWp monocrystalline photovoltaic system with batteries and comparison with fossil energy production system," Applied Energy, Elsevier, vol. 154(C), pages 428-437.
    10. Khan, M.J. & Iqbal, M.T., 2005. "Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland," Renewable Energy, Elsevier, vol. 30(6), pages 835-854.
    11. Benjamin McLellan & Qi Zhang & Hooman Farzaneh & N. Agya Utama & Keiichi N. Ishihara, 2012. "Resilience, Sustainability and Risk Management: A Focus on Energy," Challenges, MDPI, vol. 3(2), pages 1-30, August.
    12. Dufo-López, Rodolfo & Zubi, Ghassan & Fracastoro, Gian Vincenzo, 2012. "Tecno-economic assessment of an off-grid PV-powered community kitchen for developing regions," Applied Energy, Elsevier, vol. 91(1), pages 255-262.
    13. Nishar, Abdul & Richards, Steve & Breen, Dan & Robertson, John & Breen, Barbara, 2016. "Thermal infrared imaging of geothermal environments and by an unmanned aerial vehicle (UAV): A case study of the Wairakei – Tauhara geothermal field, Taupo, New Zealand," Renewable Energy, Elsevier, vol. 86(C), pages 1256-1264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agostini, Alessandro & Belmonte, Nadia & Masala, Alessio & Hu, Jianjiang & Rizzi, Paola & Fichtner, Maximilian & Moretto, Pietro & Luetto, Carlo & Sgroi, Mauro & Baricco, Marcello, 2018. "Role of hydrogen tanks in the life cycle assessment of fuel cell-based auxiliary power units," Applied Energy, Elsevier, vol. 215(C), pages 1-12.
    2. Daniel Fett & Christoph Fraunholz & Philipp Schneider, 2023. "Life cycle greenhouse gas emissions of residential battery storage systems: A German case study," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 182-195, February.
    3. Belmonte, N. & Staulo, S. & Fiorot, S. & Luetto, C. & Rizzi, P. & Baricco, M., 2018. "Fuel cell powered octocopter for inspection of mobile cranes: Design, cost analysis and environmental impacts," Applied Energy, Elsevier, vol. 215(C), pages 556-565.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belmonte, N. & Staulo, S. & Fiorot, S. & Luetto, C. & Rizzi, P. & Baricco, M., 2018. "Fuel cell powered octocopter for inspection of mobile cranes: Design, cost analysis and environmental impacts," Applied Energy, Elsevier, vol. 215(C), pages 556-565.
    2. Cox, Brian & Bauer, Christian & Mendoza Beltran, Angelica & van Vuuren, Detlef P. & Mutel, Christopher L., 2020. "Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios," Applied Energy, Elsevier, vol. 269(C).
    3. Troy, Stefanie & Schreiber, Andrea & Reppert, Thorsten & Gehrke, Hans-Gregor & Finsterbusch, Martin & Uhlenbruck, Sven & Stenzel, Peter, 2016. "Life Cycle Assessment and resource analysis of all-solid-state batteries," Applied Energy, Elsevier, vol. 169(C), pages 757-767.
    4. Shabbir, Noman & Usman, Muhammad & Jawad, Muhammad & Zafar, Muhammad H. & Iqbal, Muhammad N. & Kütt, Lauri, 2020. "Economic analysis and impact on national grid by domestic photovoltaic system installations in Pakistan," Renewable Energy, Elsevier, vol. 153(C), pages 509-521.
    5. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2020. "Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities," Applied Energy, Elsevier, vol. 258(C).
    6. Cox, Brian L. & Mutel, Christopher L., 2018. "The environmental and cost performance of current and future motorcycles," Applied Energy, Elsevier, vol. 212(C), pages 1013-1024.
    7. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    8. Rocco, Matteo V. & Casalegno, Andrea & Colombo, Emanuela, 2018. "Modelling road transport technologies in future scenarios: Theoretical comparison and application of Well-to-Wheels and Input-Output analyses," Applied Energy, Elsevier, vol. 232(C), pages 583-597.
    9. Kevin Joseph Dillman & Áróra Árnadóttir & Jukka Heinonen & Michał Czepkiewicz & Brynhildur Davíðsdóttir, 2020. "Review and Meta-Analysis of EVs: Embodied Emissions and Environmental Breakeven," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
    10. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Lu, Yashun & Ji, Jie, 2018. "Life-cycle assessment of a low-concentration PV module for building south wall integration in China," Applied Energy, Elsevier, vol. 215(C), pages 174-185.
    11. Khan, Muhammad Imran & Shahrestani, Mehdi & Hayat, Tasawar & Shakoor, Abdul & Vahdati, Maria, 2019. "Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan," Applied Energy, Elsevier, vol. 242(C), pages 1738-1752.
    12. Rezk, Hegazy & Dousoky, Gamal M., 2016. "Technical and economic analysis of different configurations of stand-alone hybrid renewable power systems – A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 941-953.
    13. Aleksandar Lozanovski & Nicole Whitehouse & Nathanael Ko & Simon Whitehouse, 2018. "Sustainability Assessment of Fuel Cell Buses in Public Transport," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    14. Yisong Chen & Xu Hu & Jiahui Liu, 2019. "Life Cycle Assessment of Fuel Cell Vehicles Considering the Detailed Vehicle Components: Comparison and Scenario Analysis in China Based on Different Hydrogen Production Schemes," Energies, MDPI, vol. 12(15), pages 1-24, August.
    15. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    16. Zhang, Yang & Campana, Pietro Elia & Lundblad, Anders & Yan, Jinyue, 2017. "Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation," Applied Energy, Elsevier, vol. 201(C), pages 397-411.
    17. Mohamed, Moataz & Higgins, Christopher D. & Ferguson, Mark & Réquia, Weeberb J., 2018. "The influence of vehicle body type in shaping behavioural intention to acquire electric vehicles: A multi-group structural equation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 54-72.
    18. Ghafoor, Abdul & Munir, Anjum, 2015. "Design and economics analysis of an off-grid PV system for household electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 496-502.
    19. Agostini, Alessandro & Belmonte, Nadia & Masala, Alessio & Hu, Jianjiang & Rizzi, Paola & Fichtner, Maximilian & Moretto, Pietro & Luetto, Carlo & Sgroi, Mauro & Baricco, Marcello, 2018. "Role of hydrogen tanks in the life cycle assessment of fuel cell-based auxiliary power units," Applied Energy, Elsevier, vol. 215(C), pages 1-12.
    20. Małgorzata Mrozik & Agnieszka Merkisz-Guranowska, 2020. "Environmental Assessment of the Vehicle Operation Process," Energies, MDPI, vol. 14(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jchals:v:8:y:2017:i:1:p:9-:d:93741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.