Examining Real-Road Fuel Consumption Performance of Hydrogen-Fueled Series Hybrid Vehicles
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ryuji Kawamoto & Hideo Mochizuki & Yoshihisa Moriguchi & Takahiro Nakano & Masayuki Motohashi & Yuji Sakai & Atsushi Inaba, 2019. "Estimation of CO 2 Emissions of Internal Combustion Engine Vehicle and Battery Electric Vehicle Using LCA," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
- Yanmei Li & Ningning Ha & Tingting Li, 2019. "Research on Carbon Emissions of Electric Vehicles throughout the Life Cycle Assessment Taking into Vehicle Weight and Grid Mix Composition," Energies, MDPI, vol. 12(19), pages 1-15, September.
- Wang, Dawei & Zamel, Nada & Jiao, Kui & Zhou, Yibo & Yu, Shuhai & Du, Qing & Yin, Yan, 2013. "Life cycle analysis of internal combustion engine, electric and fuel cell vehicles for China," Energy, Elsevier, vol. 59(C), pages 402-412.
- Lin Gao & Zach C. Winfield, 2012. "Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles," Energies, MDPI, vol. 5(3), pages 1-16, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Goncalo Rego & Joao Rocha & Jose A. Faria & Joao L. Afonso & Vitor Monteiro, 2024. "A Review of Hydrogen Production Methods and Power Electronics Converter Topologies for Green Hydrogen Applications," Energies, MDPI, vol. 17(22), pages 1-22, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
- Kevin Joseph Dillman & Áróra Árnadóttir & Jukka Heinonen & Michał Czepkiewicz & Brynhildur Davíðsdóttir, 2020. "Review and Meta-Analysis of EVs: Embodied Emissions and Environmental Breakeven," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
- Renjie Wang & Yuanyuan Song & Honglei Xu & Yue Li & Jie Liu, 2022. "Life Cycle Assessment of Energy Consumption and CO 2 Emission from HEV, PHEV and BEV for China in the Past, Present and Future," Energies, MDPI, vol. 15(18), pages 1-16, September.
- Simons, Andrew & Bauer, Christian, 2015. "A life-cycle perspective on automotive fuel cells," Applied Energy, Elsevier, vol. 157(C), pages 884-896.
- Shafayat Rashid & Emanuele Pagone, 2023. "Cradle-to-Grave Lifecycle Environmental Assessment of Hybrid Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
- Daniel Rasbash & Kevin Joseph Dillman & Jukka Heinonen & Eyjólfur Ingi Ásgeirsson, 2023. "A National and Regional Greenhouse Gas Breakeven Assessment of EVs across North America," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
- Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
- Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
- Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
- Liu, Yajie & Dong, Feng & Wang, Yulong & Li, Jingyun & Qin, Chang, 2023. "Assessment of the energy-saving and environment effects of China's gasoline vehicle withdrawal under the impact of geopolitical risks," Resources Policy, Elsevier, vol. 86(PB).
- Haugen, Molly J. & Paoli, Leonardo & Cullen, Jonathan & Cebon, David & Boies, Adam M., 2021. "A fork in the road: Which energy pathway offers the greatest energy efficiency and CO2 reduction potential for low-carbon vehicles?," Applied Energy, Elsevier, vol. 283(C).
- Anca N. Iuga (Butnariu) & Vasile N. Popa & Luminița I. Popa, 2018. "Comparative Analysis of Automotive Products Regarding the Influence of Eco-Friendly Methods to Emissions’ Reduction," Energies, MDPI, vol. 12(1), pages 1-24, December.
- Li, Jingjing & Nian, Victor & Jiao, Jianling, 2022. "Diffusion and benefits evaluation of electric vehicles under policy interventions based on a multiagent system dynamics model," Applied Energy, Elsevier, vol. 309(C).
- Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & Jiang, Shuhua & Hao, Han, 2017. "Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China," Applied Energy, Elsevier, vol. 204(C), pages 1399-1411.
- Tian Wu & Mengbo Zhang & Xunmin Ou, 2014. "Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model," Energies, MDPI, vol. 7(11), pages 1-29, November.
- Zacharopoulos, Leon & Thonemann, Nils & Dumeier, Marcel & Geldermann, Jutta, 2023. "Environmental optimization of the charge of battery electric vehicles," Applied Energy, Elsevier, vol. 329(C).
- Stephanus Erasmus & Jacques Maritz, 2023. "A Carbon Reduction and Waste Heat Utilization Strategy for Generators in Scalable PV—Diesel Generator Campus Microgrids," Energies, MDPI, vol. 16(18), pages 1-12, September.
- Buberger, Johannes & Kersten, Anton & Kuder, Manuel & Eckerle, Richard & Weyh, Thomas & Thiringer, Torbjörn, 2022. "Total CO2-equivalent life-cycle emissions from commercially available passenger cars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
- Viñoles-Cebolla, Rosario & Bastante-Ceca, María José & Capuz-Rizo, Salvador F., 2015. "An integrated method to calculate an automobile's emissions throughout its life cycle," Energy, Elsevier, vol. 83(C), pages 125-136.
More about this item
Keywords
hydrogen engine; series hybrid; fuel cell vehicle; electric vehicle; life-cycle assessments of CO 2 emissions; driving range;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7193-:d:1264733. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.