IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7193-d1264733.html
   My bibliography  Save this article

Examining Real-Road Fuel Consumption Performance of Hydrogen-Fueled Series Hybrid Vehicles

Author

Listed:
  • Kaname Naganuma

    (Department of Mechanical Engineering, College of Engineering, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi 921-8501, Japan)

  • Yuhei Sakane

    (Department of Mechanical Engineering, College of Engineering, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi 921-8501, Japan)

Abstract

The use of hydrogen fuel produced from renewable energy sources is an effective way to reduce well-to-wheel CO 2 emissions from automobiles. In this study, the performance of a hydrogen-powered series hybrid vehicle was compared with that of other powertrains, such as gasoline-powered hybrid, fuel cell, and electric vehicles, in a simulation that could estimate CO 2 emissions under real-world driving conditions. The average fuel consumption of the hydrogen-powered series hybrid vehicle exceeded that of the gasoline-powered series hybrid vehicle under all conditions and was better than that of the fuel cell vehicle under urban and winding conditions with frequent acceleration and deceleration. The driving range was longer than that of the battery-powered vehicle but approximately 60% of that of the gasoline-powered series hybrid. Regarding the life-cycle assessment of CO 2 emissions, fuel cell and electric vehicles emitted more CO 2 during the manufacturing process. Regarding fuel production, CO 2 emissions from hydrogen and electric vehicles depend on the energy source. However, in the future, this problem can be solved by using carbon-free energy sources for fuel production. Therefore, hydrogen-powered series hybrid vehicles show a high potential to be environmentally friendly alternative fuel vehicles.

Suggested Citation

  • Kaname Naganuma & Yuhei Sakane, 2023. "Examining Real-Road Fuel Consumption Performance of Hydrogen-Fueled Series Hybrid Vehicles," Energies, MDPI, vol. 16(20), pages 1-11, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7193-:d:1264733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7193/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7193/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ryuji Kawamoto & Hideo Mochizuki & Yoshihisa Moriguchi & Takahiro Nakano & Masayuki Motohashi & Yuji Sakai & Atsushi Inaba, 2019. "Estimation of CO 2 Emissions of Internal Combustion Engine Vehicle and Battery Electric Vehicle Using LCA," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    2. Wang, Dawei & Zamel, Nada & Jiao, Kui & Zhou, Yibo & Yu, Shuhai & Du, Qing & Yin, Yan, 2013. "Life cycle analysis of internal combustion engine, electric and fuel cell vehicles for China," Energy, Elsevier, vol. 59(C), pages 402-412.
    3. Yanmei Li & Ningning Ha & Tingting Li, 2019. "Research on Carbon Emissions of Electric Vehicles throughout the Life Cycle Assessment Taking into Vehicle Weight and Grid Mix Composition," Energies, MDPI, vol. 12(19), pages 1-15, September.
    4. Lin Gao & Zach C. Winfield, 2012. "Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles," Energies, MDPI, vol. 5(3), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
    2. Kevin Joseph Dillman & Áróra Árnadóttir & Jukka Heinonen & Michał Czepkiewicz & Brynhildur Davíðsdóttir, 2020. "Review and Meta-Analysis of EVs: Embodied Emissions and Environmental Breakeven," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
    3. Renjie Wang & Yuanyuan Song & Honglei Xu & Yue Li & Jie Liu, 2022. "Life Cycle Assessment of Energy Consumption and CO 2 Emission from HEV, PHEV and BEV for China in the Past, Present and Future," Energies, MDPI, vol. 15(18), pages 1-16, September.
    4. Simons, Andrew & Bauer, Christian, 2015. "A life-cycle perspective on automotive fuel cells," Applied Energy, Elsevier, vol. 157(C), pages 884-896.
    5. Shafayat Rashid & Emanuele Pagone, 2023. "Cradle-to-Grave Lifecycle Environmental Assessment of Hybrid Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    6. Daniel Rasbash & Kevin Joseph Dillman & Jukka Heinonen & Eyjólfur Ingi Ásgeirsson, 2023. "A National and Regional Greenhouse Gas Breakeven Assessment of EVs across North America," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    7. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
    8. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    9. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    10. Liu, Yajie & Dong, Feng & Wang, Yulong & Li, Jingyun & Qin, Chang, 2023. "Assessment of the energy-saving and environment effects of China's gasoline vehicle withdrawal under the impact of geopolitical risks," Resources Policy, Elsevier, vol. 86(PB).
    11. Haugen, Molly J. & Paoli, Leonardo & Cullen, Jonathan & Cebon, David & Boies, Adam M., 2021. "A fork in the road: Which energy pathway offers the greatest energy efficiency and CO2 reduction potential for low-carbon vehicles?," Applied Energy, Elsevier, vol. 283(C).
    12. Anca N. Iuga (Butnariu) & Vasile N. Popa & Luminița I. Popa, 2018. "Comparative Analysis of Automotive Products Regarding the Influence of Eco-Friendly Methods to Emissions’ Reduction," Energies, MDPI, vol. 12(1), pages 1-24, December.
    13. Li, Jingjing & Nian, Victor & Jiao, Jianling, 2022. "Diffusion and benefits evaluation of electric vehicles under policy interventions based on a multiagent system dynamics model," Applied Energy, Elsevier, vol. 309(C).
    14. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & Jiang, Shuhua & Hao, Han, 2017. "Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China," Applied Energy, Elsevier, vol. 204(C), pages 1399-1411.
    15. Tian Wu & Mengbo Zhang & Xunmin Ou, 2014. "Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model," Energies, MDPI, vol. 7(11), pages 1-29, November.
    16. Zacharopoulos, Leon & Thonemann, Nils & Dumeier, Marcel & Geldermann, Jutta, 2023. "Environmental optimization of the charge of battery electric vehicles," Applied Energy, Elsevier, vol. 329(C).
    17. Stephanus Erasmus & Jacques Maritz, 2023. "A Carbon Reduction and Waste Heat Utilization Strategy for Generators in Scalable PV—Diesel Generator Campus Microgrids," Energies, MDPI, vol. 16(18), pages 1-12, September.
    18. Buberger, Johannes & Kersten, Anton & Kuder, Manuel & Eckerle, Richard & Weyh, Thomas & Thiringer, Torbjörn, 2022. "Total CO2-equivalent life-cycle emissions from commercially available passenger cars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
    20. Viñoles-Cebolla, Rosario & Bastante-Ceca, María José & Capuz-Rizo, Salvador F., 2015. "An integrated method to calculate an automobile's emissions throughout its life cycle," Energy, Elsevier, vol. 83(C), pages 125-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7193-:d:1264733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.