IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v4y2022i1p9-148d756219.html
   My bibliography  Save this article

Greenhouse Gas Implications of Extending the Service Life of PEM Fuel Cells for Automotive Applications: A Life Cycle Assessment

Author

Listed:
  • Alessandro Arrigoni

    (Joint Research Centre (JRC), European Commission, 1755 LE Petten, The Netherlands)

  • Valeria Arosio

    (Department of Chemistry, Materials and Chemical Engineering ‘‘Giulio Natta’’, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy)

  • Andrea Basso Peressut

    (Department of Chemistry, Materials and Chemical Engineering ‘‘Giulio Natta’’, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy)

  • Saverio Latorrata

    (Department of Chemistry, Materials and Chemical Engineering ‘‘Giulio Natta’’, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy)

  • Giovanni Dotelli

    (Department of Chemistry, Materials and Chemical Engineering ‘‘Giulio Natta’’, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy)

Abstract

A larger adoption of hydrogen fuel-cell electric vehicles (FCEVs) is typically included in the strategies to decarbonize the transportation sector. This inclusion is supported by life-cycle assessments (LCAs), which show the potential greenhouse gas (GHG) emission benefit of replacing internal combustion engine vehicles with their fuel cell counterpart. However, the literature review performed in this study shows that the effects of durability and performance losses of fuel cells on the life-cycle environmental impact of the vehicle have rarely been assessed. Most of the LCAs assume a constant fuel consumption (ranging from 0.58 to 1.15 kgH 2 /100 km) for the vehicles throughout their service life, which ranges in the assessments from 120,000 to 225,000 km. In this study, the effect of performance losses on the life-cycle GHG emissions of the vehicles was assessed based on laboratory experiments. Losses have the effect of increasing the life-cycle GHG emissions of the vehicle up to 13%. Moreover, this study attempted for the first time to investigate via laboratory analyses the GHG implications of replacing the hydrophobic polymer for the gas diffusion medium (GDM) of fuel cells to increase their durability. LCA showed that when the service life of the vehicle was fixed at 150,000 km, the GHG emission savings of using an FC with lower performance losses (i.e., FC coated with fluorinated ethylene propylene (FEP) instead of polytetrafluoroethylene (PTFE)) are negligible compared to the overall life-cycle impact of the vehicle. Both the GDM coating and the amount of hydrogen saved account for less than 2% of the GHG emissions arising during vehicle operation. On the other hand, when the service life of the vehicle depends on the operability of the fuel cell, the global warming potential per driven km of the FEP-based FCEV reduces by 7 to 32%. The range of results depends on several variables, such as the GHG emissions from hydrogen production and the initial fuel consumption of the vehicle. Higher GHG savings are expected from an FC vehicle with high consumption of hydrogen produced with fossil fuels. Based on the results, we recommend the inclusion of fuel-cell durability in future LCAs of FCEVs. We also advocate for more research on the real-life performance of fuel cells employing alternative materials.

Suggested Citation

  • Alessandro Arrigoni & Valeria Arosio & Andrea Basso Peressut & Saverio Latorrata & Giovanni Dotelli, 2022. "Greenhouse Gas Implications of Extending the Service Life of PEM Fuel Cells for Automotive Applications: A Life Cycle Assessment," Clean Technol., MDPI, vol. 4(1), pages 1-17, February.
  • Handle: RePEc:gam:jcltec:v:4:y:2022:i:1:p:9-148:d:756219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/4/1/9/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/4/1/9/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simons, Andrew & Bauer, Christian, 2015. "A life-cycle perspective on automotive fuel cells," Applied Energy, Elsevier, vol. 157(C), pages 884-896.
    2. Saverio Latorrata & Paola Gallo Stampino & Cinzia Cristiani & Giovanni Dotelli, 2017. "Performance Evaluation and Durability Enhancement of FEP-Based Gas Diffusion Media for PEM Fuel Cells," Energies, MDPI, vol. 10(12), pages 1-17, December.
    3. Burkhardt, Jörg & Patyk, Andreas & Tanguy, Philippe & Retzke, Carsten, 2016. "Hydrogen mobility from wind energy – A life cycle assessment focusing on the fuel supply," Applied Energy, Elsevier, vol. 181(C), pages 54-64.
    4. Zhang, Tong & Wang, Peiqi & Chen, Huicui & Pei, Pucheng, 2018. "A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition," Applied Energy, Elsevier, vol. 223(C), pages 249-262.
    5. Cheng Wang & Shubo Wang & Linfa Peng & Junliang Zhang & Zhigang Shao & Jun Huang & Chunwen Sun & Minggao Ouyang & Xiangming He, 2016. "Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications," Energies, MDPI, vol. 9(8), pages 1-39, July.
    6. Mario Martín-Gamboa & Paula Quinteiro & Ana Cláudia Dias & Diego Iribarren, 2021. "Comparative Social Life Cycle Assessment of Two Biomass-to-Electricity Systems," IJERPH, MDPI, vol. 18(9), pages 1-15, May.
    7. Chen, Huicui & Pei, Pucheng & Song, Mancun, 2015. "Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells," Applied Energy, Elsevier, vol. 142(C), pages 154-163.
    8. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2020. "Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China," Energy, Elsevier, vol. 209(C).
    9. Chun, Jeong Hwan & Jo, Dong Hyun & Kim, Sang Gon & Park, Sun Hee & Lee, Chang Hoon & Kim, Sung Hyun, 2012. "Improvement of the mechanical durability of micro porous layer in a proton exchange membrane fuel cell by elimination of surface cracks," Renewable Energy, Elsevier, vol. 48(C), pages 35-41.
    10. Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianmarco Gottardo & Andrea Basso Peressut & Silvia Colnago & Saverio Latorrata & Luigi Piegari & Giovanni Dotelli, 2023. "LCA of a Proton Exchange Membrane Fuel Cell Electric Vehicle Considering Different Power System Architectures," Energies, MDPI, vol. 16(19), pages 1-19, September.
    2. Matteo Di Virgilio & Andrea Basso Peressut & Valeria Arosio & Alessandro Arrigoni & Saverio Latorrata & Giovanni Dotelli, 2023. "Functional and Environmental Performances of Novel Electrolytic Membranes for PEM Fuel Cells: A Lab-Scale Case Study," Clean Technol., MDPI, vol. 5(1), pages 1-20, January.
    3. Antonio Nicolò Mancino & Carla Menale & Francesco Vellucci & Manlio Pasquali & Roberto Bubbico, 2023. "PEM Fuel Cell Applications in Road Transport," Energies, MDPI, vol. 16(17), pages 1-27, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aldakheel, F. & Ismail, M.S. & Hughes, K.J. & Ingham, D.B. & Ma, L. & Pourkashanian, M. & Cumming, D. & Smith, R., 2020. "Gas permeability, wettability and morphology of gas diffusion layers before and after performing a realistic ex-situ compression test," Renewable Energy, Elsevier, vol. 151(C), pages 1082-1091.
    2. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    3. Pei, Pucheng & Jia, Xiaoning & Xu, Huachi & Li, Pengcheng & Wu, Ziyao & Li, Yuehua & Ren, Peng & Chen, Dongfang & Huang, Shangwei, 2018. "The recovery mechanism of proton exchange membrane fuel cell in micro-current operation," Applied Energy, Elsevier, vol. 226(C), pages 1-9.
    4. George Barjoveanu & Florenta Dinita & Carmen Teodosiu, 2022. "Aging Passenger Car Fleet Structure, Dynamics, and Environmental Performance Evaluation at the Regional Level by Life Cycle Assessment," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    5. Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
    6. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    7. Devin Fowler & Vladimir Gurau & Daniel Cox, 2019. "Bridging the Gap between Automated Manufacturing of Fuel Cell Components and Robotic Assembly of Fuel Cell Stacks," Energies, MDPI, vol. 12(19), pages 1-14, September.
    8. Ke Song & Yimin Wang & Xiao Hu & Jing Cao, 2020. "Online Prediction of Vehicular Fuel Cell Residual Lifetime Based on Adaptive Extended Kalman Filter," Energies, MDPI, vol. 13(23), pages 1-21, November.
    9. Chaube, Anshuman & Chapman, Andrew & Minami, Akari & Stubbins, James & Huff, Kathryn D., 2021. "The role of current and emerging technologies in meeting Japan’s mid- to long-term carbon reduction goals," Applied Energy, Elsevier, vol. 304(C).
    10. Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
    11. Zhang, Caizhi & Zeng, Tao & Wu, Qi & Deng, Chenghao & Chan, Siew Hwa & Liu, Zhixiang, 2021. "Improved efficiency maximization strategy for vehicular dual-stack fuel cell system considering load state of sub-stacks through predictive soft-loading," Renewable Energy, Elsevier, vol. 179(C), pages 929-944.
    12. Bareiß, Kay & de la Rua, Cristina & Möckl, Maximilian & Hamacher, Thomas, 2019. "Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems," Applied Energy, Elsevier, vol. 237(C), pages 862-872.
    13. Chen, Hong & Zhan, Zhigang & Jiang, Panxing & Sun, Yahao & Liao, Liwen & Wan, Xiongbiao & Du, Qing & Chen, Xiaosong & Song, Hao & Zhu, Ruijie & Shu, Zhanhong & Li, Shang & Pan, Mu, 2022. "Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA," Applied Energy, Elsevier, vol. 310(C).
    14. Li, Zhongliang & Outbib, Rachid & Giurgea, Stefan & Hissel, Daniel & Jemei, Samir & Giraud, Alain & Rosini, Sebastien, 2016. "Online implementation of SVM based fault diagnosis strategy for PEMFC systems," Applied Energy, Elsevier, vol. 164(C), pages 284-293.
    15. Chi, Yuanying & Xu, Weiyue & Xiao, Meng & Wang, Zhengzao & Zhang, Xufeng & Chen, Yahui, 2023. "Fuel-cycle based environmental and economic assessment of hydrogen fuel cell vehicles in China," Energy, Elsevier, vol. 282(C).
    16. Lorenzo, Charles & Bouquain, David & Hibon, Samuel & Hissel, Daniel, 2021. "Synthesis of degradation mechanisms and of their impacts on degradation rates on proton-exchange membrane fuel cells and lithium-ion nickel–manganese–cobalt batteries in hybrid transport applicati," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    17. Pei, Pucheng & Chen, Dongfang & Wu, Ziyao & Ren, Peng, 2019. "Nonlinear methods for evaluating and online predicting the lifetime of fuel cells," Applied Energy, Elsevier, vol. 254(C).
    18. Zhang, Ruiyuan & Min, Ting & Chen, Li & Kang, Qinjun & He, Ya-Ling & Tao, Wen-Quan, 2019. "Pore-scale and multiscale study of effects of Pt degradation on reactive transport processes in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Liu, Yongfeng & Fan, Lei & Pei, Pucheng & Yao, Shengzhuo & Wang, Fang, 2018. "Asymptotic analysis for the inlet relative humidity effects on the performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 213(C), pages 573-584.
    20. Mayyas, Ahmad & Chadly, Assia & Amer, Saed Talib & Azar, Elie, 2022. "Economics of the Li-ion batteries and reversible fuel cells as energy storage systems when coupled with dynamic electricity pricing schemes," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:4:y:2022:i:1:p:9-148:d:756219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.