IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4491-d601028.html
   My bibliography  Save this article

Effect of Methanol/Water Mixed Fuel Compound Injection on Engine Combustion and Emissions

Author

Listed:
  • Changchun Xu

    (Division of Mechanical and Automotive Engineering, Kongju National University 275, Budae-dong, Cheonan-si 331-717, Chungcheongnam-do, Korea)

  • Haengmuk Cho

    (Division of Mechanical and Automotive Engineering, Kongju National University 275, Budae-dong, Cheonan-si 331-717, Chungcheongnam-do, Korea)

Abstract

Due to the recent global increase in fuel prices, to reduce emissions from ground transportation and improve urban air quality, it is necessary to improve fuel efficiency and reduce emissions. Water, methanol, and a mixture of the two were added at the pre-intercooler position to keep the same charge and cooling of the original rich mixture, reduce BSFC and increase ITE, and promote combustion. The methanol/water mixing volume ratios of different fuel injection strategies were compared to find the best balance between fuel consumption, performance, and emission trends. By simulating the combustion mechanism of methanol, water, and diesel mixed through the Chemkin system, the ignition delay, temperature change, and the generation rate of the hydroxyl group (−OH) in the reaction process were analyzed. Furthermore, the performance and emission of the engine were analyzed in combination with the actual experiment process. This paper studied the application of different concentration ratios of the water–methanol–diesel mixture in engines. Five concentration ratios of water–methanol blending were injected into the engine at different injection ratios at the pre-intercooler position, such as 100% methanol, 90% methanol/10% water, 60% methanol/40% water, 30% methanol/70% water, 100% water was used. With different volume ratios of premixes, the combustion rate and combustion efficiency were affected by droplet extinguishment, flashing, or explosion, resulting in changes in combustion temperature and affecting engine performance and emissions. In this article, the injection carryout at the pre-intercooler position of the intake port indicated thermal efficiency increase and a brake specific fuel consumption rate decrease with the increase of water–methanol concentration, and reduce CO, UHC, and nitrogen oxide emissions. In particular, when 60% methanol and 40% water were added, it was found that the ignition delay was the shortest and the cylinder pressure was the largest, but the heat release rate was indeed the lowest.

Suggested Citation

  • Changchun Xu & Haengmuk Cho, 2021. "Effect of Methanol/Water Mixed Fuel Compound Injection on Engine Combustion and Emissions," Energies, MDPI, vol. 14(15), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4491-:d:601028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4491/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4491/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tauzia, Xavier & Maiboom, Alain & Shah, Samiur Rahman, 2010. "Experimental study of inlet manifold water injection on combustion and emissions of an automotive direct injection Diesel engine," Energy, Elsevier, vol. 35(9), pages 3628-3639.
    2. Fahd, M. Ebna Alam & Wenming, Yang & Lee, P.S. & Chou, S.K. & Yap, Christopher R., 2013. "Experimental investigation of the performance and emission characteristics of direct injection diesel engine by water emulsion diesel under varying engine load condition," Applied Energy, Elsevier, vol. 102(C), pages 1042-1049.
    3. Watanabe, Hirotatsu & Suzuki, Yoshiyuki & Harada, Takuji & Matsushita, Yohsuke & Aoki, Hideyuki & Miura, Takatoshi, 2010. "An experimental investigation of the breakup characteristics of secondary atomization of emulsified fuel droplet," Energy, Elsevier, vol. 35(2), pages 806-813.
    4. Zhen, Xudong & Wang, Yang, 2015. "An overview of methanol as an internal combustion engine fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 477-493.
    5. Miganakallu, Niranjan & Yang, Zhuyong & Rogóż, Rafał & Kapusta, Łukasz Jan & Christensen, Cord & Barros, Sam & Naber, Jeffrey, 2020. "Effect of water - methanol blends on engine performance at borderline knock conditions in gasoline direct injection engines," Applied Energy, Elsevier, vol. 264(C).
    6. Wang, Xin & Ge, Yunshan & Liu, Linlin & Peng, Zihang & Hao, Lijun & Yin, Hang & Ding, Yan & Wang, Junfang, 2015. "Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios," Applied Energy, Elsevier, vol. 157(C), pages 134-143.
    7. Liu, Hui & Wang, Zhi & Long, Yan & Xiang, Shouzhi & Wang, Jianxin & Wagnon, Scott W., 2015. "Methanol-gasoline Dual-fuel Spark Ignition (DFSI) combustion with dual-injection for engine particle number (PN) reduction and fuel economy improvement," Energy, Elsevier, vol. 89(C), pages 1010-1017.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anastasia Islamova & Pavel Tkachenko & Nikita Shlegel & Genii Kuznetsov, 2023. "Secondary Atomization of Fuel Oil and Fuel Oil/Water Emulsion through Droplet-Droplet Collisions and Impingement on a Solid Wall," Energies, MDPI, vol. 16(2), pages 1-27, January.
    2. Jiamao Luo & Shengfang Huang & Shunhua Yang & Wanzhou Zhang & Zhongqiang Mu, 2022. "Effect of Water Injection on Turbine Inlet under Different Flight Conditions," Energies, MDPI, vol. 15(19), pages 1-16, October.
    3. Huabing Wen & Yue Yu & Jingrui Li & Changchun Xu & Haiguo Jing & Jianhua Shen, 2023. "Numerical Investigation on the Influence of Injection Location and Injection Strategy on a High-Pressure Direct Injection Diesel/Methanol Dual-Fuel Engine," Energies, MDPI, vol. 16(11), pages 1-26, June.
    4. Lv, Chengkun & Lan, Zhu & Wang, Ziao & Chang, Juntao & Yu, Daren, 2024. "Intelligent ammonia precooling control for TBCC mode transition based on neural network improved equilibrium manifold expansion model," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miganakallu, Niranjan & Yang, Zhuyong & Rogóż, Rafał & Kapusta, Łukasz Jan & Christensen, Cord & Barros, Sam & Naber, Jeffrey, 2020. "Effect of water - methanol blends on engine performance at borderline knock conditions in gasoline direct injection engines," Applied Energy, Elsevier, vol. 264(C).
    2. Zhaowen Wang & Shang Wu & Yuhan Huang & Yulin Chen & Shuguo Shi & Xiaobei Cheng & Ronghua Huang, 2017. "Evaporation and Ignition Characteristics of Water Emulsified Diesel under Conventional and Low Temperature Combustion Conditions," Energies, MDPI, vol. 10(8), pages 1-14, July.
    3. Zhang, Wei & Chen, Zhaohui & Shen, Yinggang & Shu, Gequn & Chen, Guisheng & Xu, Biao & Zhao, Wei, 2013. "Influence of water emulsified diesel & oxygen-enriched air on diesel engine NO-smoke emissions and combustion characteristics," Energy, Elsevier, vol. 55(C), pages 369-377.
    4. Hasannuddin, A.K. & Wira, J.Y. & Sarah, S. & Ahmad, M.I. & Aizam, S.A. & Aiman, M.A.B. & Watanabe, S. & Hirofumi, N. & Azrin, M.A., 2016. "Durability studies of single cylinder diesel engine running on emulsion fuel," Energy, Elsevier, vol. 94(C), pages 557-568.
    5. Vellaiyan, Suresh, 2020. "Combustion, performance and emission evaluation of a diesel engine fueled with soybean biodiesel and its water blends," Energy, Elsevier, vol. 201(C).
    6. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Shen, Bo & Su, Yan & Yu, Hao & Zhang, Yulin & Lang, Maochun & Yang, He, 2023. "Experimental study on the effect of injection strategies on the combustion and emissions characteristic of gasoline/methanol dual-fuel turbocharged engine under high load," Energy, Elsevier, vol. 282(C).
    8. Nuthan Prasad, B.S. & Pandey, Jayashish Kumar & Kumar, G.N., 2020. "Impact of changing compression ratio on engine characteristics of an SI engine fueled with equi-volume blend of methanol and gasoline," Energy, Elsevier, vol. 191(C).
    9. Shen, Shiquan & Sun, Kai & Che, Zhizhao & Wang, Tianyou & Jia, Ming & Cai, Junqian, 2020. "Mechanism of micro-explosion of water-in-oil emulsified fuel droplet and its effect on soot generation," Energy, Elsevier, vol. 191(C).
    10. Zhu, Zengqiang & Mu, Zhiqiang & Wei, Yanju & Du, Ruiheng & Guan, Wei & Liu, Shenghua, 2022. "Cylinder-to-cylinder variation of knock and effects of mixture formation on knock tendency for a heavy-duty spark ignition methanol engine," Energy, Elsevier, vol. 254(PA).
    11. Wang, Zhaowen & Shi, Shuguo & Huang, Sheng & Tang, Jie & Du, Tao & Cheng, Xiaobei & Huang, Ronghua & Chen, Jyh-Yuan, 2018. "Effects of water content on evaporation and combustion characteristics of water emulsified diesel spray," Applied Energy, Elsevier, vol. 226(C), pages 397-407.
    12. Hasannuddin, A.K. & Yahya, W.J. & Sarah, S. & Ithnin, A.M. & Syahrullail, S. & Sugeng, D.A. & Razak, I.F.A. & Abd Fatah, A.Y. & Aqma, W.S. & Rahman, A.H.A. & Ramlan, N.A., 2018. "Performance, emissions and carbon deposit characteristics of diesel engine operating on emulsion fuel," Energy, Elsevier, vol. 142(C), pages 496-506.
    13. Sathish Kumar, T. & Ashok, B., 2024. "Development of combustion control map for flex fuel operation in methanol powered direct injection SI engine," Energy, Elsevier, vol. 288(C).
    14. Gong, Changming & Yu, Jiawei & Wang, Kang & Liu, Jiajun & Huang, Wei & Si, Xiankai & Wei, Fuxing & Liu, Fenghua & Han, Yongqiang, 2018. "Numerical study of plasma produced ozone assisted combustion in a direct injection spark ignition methanol engine," Energy, Elsevier, vol. 153(C), pages 1028-1037.
    15. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin, 2020. "Prospective assessment of methanol vehicles in China using FANP-SWOT analysis," Transport Policy, Elsevier, vol. 96(C), pages 60-75.
    16. Khalife, Esmail & Kazerooni, Hanif & Mirsalim, Mostafa & Roodbar Shojaei, Taha & Mohammadi, Pouya & Salleh, Amran Mohd & Najafi, Bahman & Tabatabaei, Meisam, 2017. "Experimental investigation of low-level water in waste-oil produced biodiesel-diesel fuel blend," Energy, Elsevier, vol. 121(C), pages 331-340.
    17. Dhahad, Hayder A. & Chaichan, Miqdam T. & Megaritis, T., 2019. "Performance, regulated and unregulated exhaust emission of a stationary compression ignition engine fueled by water-ULSD emulsion," Energy, Elsevier, vol. 181(C), pages 1036-1050.
    18. Gong, Changming & Li, Zhaohui & Sun, Jingzhen & Liu, Fenghua, 2020. "Evaluation on combustion and lean-burn limitof a medium compression ratio hydrogen/methanol dual-injection spark-ignition engine under methanol late-injection," Applied Energy, Elsevier, vol. 277(C).
    19. Mukhtar, M.N.A. & Hagos, Ftwi Y. & Noor, M.M. & Mamat, Rizalman & Abdullah, A. Adam & Abd Aziz, Abd Rashid, 2019. "Tri-fuel emulsion with secondary atomization attributes for greener diesel engine – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 490-506.
    20. Bora, Plaban & Konwar, Lakhya Jyoti & Boro, Jutika & Phukan, Mayur Mausoom & Deka, Dhanapati & Konwar, Bolin Kumar, 2014. "Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel," Applied Energy, Elsevier, vol. 135(C), pages 450-460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4491-:d:601028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.