IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v264y2020ics0306261920302622.html
   My bibliography  Save this article

Effect of water - methanol blends on engine performance at borderline knock conditions in gasoline direct injection engines

Author

Listed:
  • Miganakallu, Niranjan
  • Yang, Zhuyong
  • Rogóż, Rafał
  • Kapusta, Łukasz Jan
  • Christensen, Cord
  • Barros, Sam
  • Naber, Jeffrey

Abstract

One of the limiting factors improving the efficiency of gasoline engines is engine knock. Various techniques including using fuels that result in charge cooling are employed to mitigate knock and improve efficiency. Water and methanol have higher heat of vaporization than gasoline. When water or methanol is injected into the intake manifold, it evaporates by exchanging energy with the charge mixture resulting in charge cooling. This allows the engine to be run with advanced spark timing without engine knock. With this motive, the impact of water - methanol injection on the engine performance of a gasoline direct injection engine was investigated. Experimental studies were conducted on a single-cylinder 0.55L engine with a compression ratio of 10.9:1 at 800 kPa net indicated mean effective pressure and 1500 revolutions per minute. Baseline tests without water injection were conducted by direct injection of gasoline fuel blended with 10% ethanol (E10). Four mixtures: 100% water, 75% water + 25% methanol, 50% water + 50% methanol and 100% methanol were used with port injection. Spark ignition timing, flow rate of the fuel and the four mixtures were varied to be within the controlled knock limit while maintaining an excess air ratio of 1.0. Comparisons on the effectiveness of these mixtures indicate that higher methanol content in the mixture helped in reaching the maximum brake torque condition at lower mixture fuel ratios. Combustion stability of the engine was improved with the addition of water and water-methanol blends due to the sensitivity of combustion phasing at advanced spark timings reducing the variation in indicated mean effective pressure. Exhaust gas temperatures decrease with the addition of water and water-methanol blends due to the combined effect of increased charge cooling and improved combustion phasing.

Suggested Citation

  • Miganakallu, Niranjan & Yang, Zhuyong & Rogóż, Rafał & Kapusta, Łukasz Jan & Christensen, Cord & Barros, Sam & Naber, Jeffrey, 2020. "Effect of water - methanol blends on engine performance at borderline knock conditions in gasoline direct injection engines," Applied Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302622
    DOI: 10.1016/j.apenergy.2020.114750
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920302622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Hui & Wang, Zhi & Wang, Jianxin, 2014. "Methanol-gasoline DFSI (dual-fuel spark ignition) combustion with dual-injection for engine knock suppression," Energy, Elsevier, vol. 73(C), pages 686-693.
    2. Galloni, E. & Fontana, G. & Palmaccio, R., 2013. "Effects of exhaust gas recycle in a downsized gasoline engine," Applied Energy, Elsevier, vol. 105(C), pages 99-107.
    3. Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi, 2016. "Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines," Applied Energy, Elsevier, vol. 169(C), pages 112-125.
    4. Wang, Xin & Ge, Yunshan & Liu, Linlin & Peng, Zihang & Hao, Lijun & Yin, Hang & Ding, Yan & Wang, Junfang, 2015. "Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios," Applied Energy, Elsevier, vol. 157(C), pages 134-143.
    5. Zhen, Xudong & Wang, Yang, 2015. "An overview of methanol as an internal combustion engine fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 477-493.
    6. Liu, Hui & Wang, Zhi & Long, Yan & Xiang, Shouzhi & Wang, Jianxin & Wagnon, Scott W., 2015. "Methanol-gasoline Dual-fuel Spark Ignition (DFSI) combustion with dual-injection for engine particle number (PN) reduction and fuel economy improvement," Energy, Elsevier, vol. 89(C), pages 1010-1017.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Zengqiang & Mu, Zhiqiang & Wei, Yanju & Du, Ruiheng & Guan, Wei & Liu, Shenghua, 2022. "Cylinder-to-cylinder variation of knock and effects of mixture formation on knock tendency for a heavy-duty spark ignition methanol engine," Energy, Elsevier, vol. 254(PA).
    2. Aqian Li & Zhaolei Zheng, 2020. "Effect of Spark Ignition Timing and Water Injection Temperature on the Knock Combustion of a GDI Engine," Energies, MDPI, vol. 13(18), pages 1-24, September.
    3. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Shen, Bo & Su, Yan & Yu, Hao & Zhang, Yulin & Lang, Maochun & Yang, He, 2023. "Experimental study on the effect of injection strategies on the combustion and emissions characteristic of gasoline/methanol dual-fuel turbocharged engine under high load," Energy, Elsevier, vol. 282(C).
    5. Gong, Changming & Li, Zhaohui & Sun, Jingzhen & Liu, Fenghua, 2020. "Evaluation on combustion and lean-burn limitof a medium compression ratio hydrogen/methanol dual-injection spark-ignition engine under methanol late-injection," Applied Energy, Elsevier, vol. 277(C).
    6. Jun Wang & Huayu Tian & Ran Zhang & Bo Shen & Yan Su & Hao Yu & Yulin Zhang, 2023. "Experimental Investigation on the Effects of Direct Injection Timing on the Combustion, Performance and Emission Characteristics of Methanol/Gasoline Dual-Fuel Spark Turbocharged Ignition (DFSI) Engin," Energies, MDPI, vol. 16(24), pages 1-14, December.
    7. Changchun Xu & Haengmuk Cho, 2021. "Effect of Methanol/Water Mixed Fuel Compound Injection on Engine Combustion and Emissions," Energies, MDPI, vol. 14(15), pages 1-14, July.
    8. Muhamad Norkhizan Abdullah & Ahmad Fitri Yusop & Rizalman Mamat & Mohd Adnin Hamidi & Kumarasamy Sudhakar & Talal Yusaf, 2023. "Sustainable Biofuels from First Three Alcohol Families: A Critical Review," Energies, MDPI, vol. 16(2), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Zengqiang & Mu, Zhiqiang & Wei, Yanju & Du, Ruiheng & Guan, Wei & Liu, Shenghua, 2022. "Cylinder-to-cylinder variation of knock and effects of mixture formation on knock tendency for a heavy-duty spark ignition methanol engine," Energy, Elsevier, vol. 254(PA).
    2. Zhen, Xudong & Tian, Zhi & Wang, Yang & Xu, Meng & Liu, Daming & Li, Xiaoyan, 2022. "Knock analysis of bio-butanol in TISI engine based on chemical reaction kinetics," Energy, Elsevier, vol. 239(PC).
    3. Changchun Xu & Haengmuk Cho, 2021. "Effect of Methanol/Water Mixed Fuel Compound Injection on Engine Combustion and Emissions," Energies, MDPI, vol. 14(15), pages 1-14, July.
    4. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
    5. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Shen, Bo & Su, Yan & Yu, Hao & Zhang, Yulin & Lang, Maochun & Yang, He, 2023. "Experimental study on the effect of injection strategies on the combustion and emissions characteristic of gasoline/methanol dual-fuel turbocharged engine under high load," Energy, Elsevier, vol. 282(C).
    7. Nuthan Prasad, B.S. & Pandey, Jayashish Kumar & Kumar, G.N., 2020. "Impact of changing compression ratio on engine characteristics of an SI engine fueled with equi-volume blend of methanol and gasoline," Energy, Elsevier, vol. 191(C).
    8. Liu, Hui & Wang, Zhi & Qi, Yunliang & He, Xin & Wang, Yingdi & Wang, Jianxin, 2019. "Super-knock suppression for highly turbocharged spark ignition engines using the fuel of propane or methanol," Energy, Elsevier, vol. 169(C), pages 1112-1118.
    9. Sathish Kumar, T. & Ashok, B., 2024. "Development of combustion control map for flex fuel operation in methanol powered direct injection SI engine," Energy, Elsevier, vol. 288(C).
    10. Gong, Changming & Yu, Jiawei & Wang, Kang & Liu, Jiajun & Huang, Wei & Si, Xiankai & Wei, Fuxing & Liu, Fenghua & Han, Yongqiang, 2018. "Numerical study of plasma produced ozone assisted combustion in a direct injection spark ignition methanol engine," Energy, Elsevier, vol. 153(C), pages 1028-1037.
    11. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin, 2020. "Prospective assessment of methanol vehicles in China using FANP-SWOT analysis," Transport Policy, Elsevier, vol. 96(C), pages 60-75.
    12. d'Adamo, A. & Breda, S. & Berni, F. & Fontanesi, S., 2019. "The potential of statistical RANS to predict knock tendency: Comparison with LES and experiments on a spark-ignition engine," Applied Energy, Elsevier, vol. 249(C), pages 126-142.
    13. Xu, Han & Yao, Anren & Yao, Chunde & Gao, Jian, 2017. "Investigation of energy transformation and damage effect under severe knock of engines," Applied Energy, Elsevier, vol. 203(C), pages 506-521.
    14. Teodosio, Luigi & Pirrello, Dino & Berni, Fabio & De Bellis, Vincenzo & Lanzafame, Rosario & D'Adamo, Alessandro, 2018. "Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine," Applied Energy, Elsevier, vol. 216(C), pages 91-104.
    15. Jung, Dongwon & Lee, Sejun, 2018. "An investigation on the potential of dedicated exhaust gas recirculation for improving thermal efficiency of stoichiometric and lean spark ignition engine operation," Applied Energy, Elsevier, vol. 228(C), pages 1754-1766.
    16. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    17. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    18. Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
    19. Karthic, S.V. & Senthil Kumar, M., 2021. "Experimental investigations on hydrogen biofueled reactivity controlled compression ignition engine using open ECU," Energy, Elsevier, vol. 229(C).
    20. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.