IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v151y2015icp249-257.html
   My bibliography  Save this article

Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion

Author

Listed:
  • Zheng, Zehui
  • Liu, Jinhuan
  • Yuan, Xufeng
  • Wang, Xiaofen
  • Zhu, Wanbin
  • Yang, Fuyu
  • Cui, Zongjun

Abstract

The methane yield and microbial community resulting from co-digestion of dairy manure and switchgrass at different mixing ratios [4:0, 3:1, 2:2, 1:3, and 0:4 based on total solids (TS) content] were evaluated. The results indicated that switchgrass is an excellent feedstock for biogas production when co-digested with dairy manure. Mono-digestion of a high dose (>4% TS) of switchgrass led to volatile fatty acid accumulation and process failure, whereas co-digestion of switchgrass and dairy manure could increase the buffering capacity and improve the fermentation efficiency. The optimal mixture ratio of dairy manure and switchgrass was 2:2, with a methane yield that was 39% higher than that obtained by digestion of the individual substrates. The added amount of 8% TS at the 2:2 ratio achieved the highest methane yield of 158.6mL/gVS, which corresponded to a 1.3-fold increase in the volumetric productivity of methane compared to mono-digestion of 4% TS switchgrass. Quantitative polymerase chain reaction and clone library analyses showed significant differences in the bacterial community resulting from the different co-substrate ratios. Planctomycetes (28%), Chloroflexi (24%), and Bacteroidetes (24%) were the dominant phyla in digesters with a co-substrate ratio of 2:2.

Suggested Citation

  • Zheng, Zehui & Liu, Jinhuan & Yuan, Xufeng & Wang, Xiaofen & Zhu, Wanbin & Yang, Fuyu & Cui, Zongjun, 2015. "Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion," Applied Energy, Elsevier, vol. 151(C), pages 249-257.
  • Handle: RePEc:eee:appene:v:151:y:2015:i:c:p:249-257
    DOI: 10.1016/j.apenergy.2015.04.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915005413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.04.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Xinyuan & Sommer, Sven G. & Christensen, Knud V., 2011. "A review of the biogas industry in China," Energy Policy, Elsevier, vol. 39(10), pages 6073-6081, October.
    2. Kafle, Gopi Krishna & Kim, Sang Hun, 2013. "Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation," Applied Energy, Elsevier, vol. 103(C), pages 61-72.
    3. Adl, Mehrdad & Sheng, Kuichuan & Gharibi, Arash, 2012. "Technical assessment of bioenergy recovery from cotton stalks through anaerobic digestion process and the effects of inexpensive pre-treatments," Applied Energy, Elsevier, vol. 93(C), pages 251-260.
    4. Massé, Daniel I. & Rajagopal, Rajinikanth & Singh, Gursharan, 2014. "Technical and operational feasibility of psychrophilic anaerobic digestion biotechnology for processing ammonia-rich waste," Applied Energy, Elsevier, vol. 120(C), pages 49-55.
    5. Chandra, R. & Vijay, V.K. & Subbarao, P.M.V. & Khura, T.K., 2012. "Production of methane from anaerobic digestion of jatropha and pongamia oil cakes," Applied Energy, Elsevier, vol. 93(C), pages 148-159.
    6. Kim, Tae Hoon & Kim, Tae Hyun, 2014. "Overview of technical barriers and implementation of cellulosic ethanol in the U.S," Energy, Elsevier, vol. 66(C), pages 13-19.
    7. Molinuevo-Salces, Beatriz & González-Fernández, Cristina & Gómez, Xiomar & García-González, María Cruz & Morán, Antonio, 2012. "Vegetable processing wastes addition to improve swine manure anaerobic digestion: Evaluation in terms of methane yield and SEM characterization," Applied Energy, Elsevier, vol. 91(1), pages 36-42.
    8. Xia, Ao & Cheng, Jun & Ding, Lingkan & Lin, Richen & Song, Wenlu & Zhou, Junhu & Cen, Kefa, 2014. "Enhancement of energy production efficiency from mixed biomass of Chlorella pyrenoidosa and cassava starch through combined hydrogen fermentation and methanogenesis," Applied Energy, Elsevier, vol. 120(C), pages 23-30.
    9. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    10. Pastor, L. & Ruiz, L. & Pascual, A. & Ruiz, B., 2013. "Co-digestion of used oils and urban landfill leachates with sewage sludge and the effect on the biogas production," Applied Energy, Elsevier, vol. 107(C), pages 438-445.
    11. Thamsiriroj, T. & Nizami, A.S. & Murphy, J.D., 2012. "Why does mono-digestion of grass silage fail in long term operation?," Applied Energy, Elsevier, vol. 95(C), pages 64-76.
    12. Zhang, Wanqin & Wei, Quanyuan & Wu, Shubiao & Qi, Dandan & Li, Wei & Zuo, Zhuang & Dong, Renjie, 2014. "Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions," Applied Energy, Elsevier, vol. 128(C), pages 175-183.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wanqin & Wei, Quanyuan & Wu, Shubiao & Qi, Dandan & Li, Wei & Zuo, Zhuang & Dong, Renjie, 2014. "Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions," Applied Energy, Elsevier, vol. 128(C), pages 175-183.
    2. Ni, Ping & Lyu, Tao & Sun, Hao & Dong, Renjie & Wu, Shubiao, 2017. "Liquid digestate recycled utilization in anaerobic digestion of pig manure: Effect on methane production, system stability and heavy metal mobilization," Energy, Elsevier, vol. 141(C), pages 1695-1704.
    3. Neshat, Soheil A. & Mohammadi, Maedeh & Najafpour, Ghasem D. & Lahijani, Pooya, 2017. "Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 308-322.
    4. Sarto, Sarto & Hildayati, Raudati & Syaichurrozi, Iqbal, 2019. "Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics," Renewable Energy, Elsevier, vol. 132(C), pages 335-350.
    5. Wieczorek, Nils & Kucuker, Mehmet Ali & Kuchta, Kerstin, 2014. "Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process," Applied Energy, Elsevier, vol. 132(C), pages 108-117.
    6. Li, Dong & Huang, Xianbo & Wang, Qingjing & Yuan, Yuexiang & Yan, Zhiying & Li, Zhidong & Huang, Yajun & Liu, Xiaofeng, 2016. "Kinetics of methane production and hydrolysis in anaerobic digestion of corn stover," Energy, Elsevier, vol. 102(C), pages 1-9.
    7. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Koch, Konrad & Helmreich, Brigitte & Drewes, Jörg E., 2015. "Co-digestion of food waste in municipal wastewater treatment plants: Effect of different mixtures on methane yield and hydrolysis rate constant," Applied Energy, Elsevier, vol. 137(C), pages 250-255.
    9. Elsamadony, M. & Tawfik, A. & Suzuki, M., 2015. "Surfactant-enhanced biohydrogen production from organic fraction of municipal solid waste (OFMSW) via dry anaerobic digestion," Applied Energy, Elsevier, vol. 149(C), pages 272-282.
    10. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    11. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    12. Chen, Miao & Liu, Shujun & Yuan, Xufeng & Li, Qing X. & Wang, Fengzhong & Xin, Fengjiao & Wen, Boting, 2021. "Methane production and characteristics of the microbial community in the co-digestion of potato pulp waste and dairy manure amended with biochar," Renewable Energy, Elsevier, vol. 163(C), pages 357-367.
    13. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
    14. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Xia, Ao & Murphy, Jerry D., 2015. "What is the gross energy yield of third generation gaseous biofuel sourced from seaweed?," Energy, Elsevier, vol. 81(C), pages 352-360.
    15. Jurado, Esperanza & Skiadas, Ioannis V. & Gavala, Hariklia N., 2013. "Enhanced methane productivity from manure fibers by aqueous ammonia soaking pretreatment," Applied Energy, Elsevier, vol. 109(C), pages 104-111.
    16. Peng, Xiaowei & Nges, Ivo Achu & Liu, Jing, 2016. "Improving methane production from wheat straw by digestate liquor recirculation in continuous stirred tank processes," Renewable Energy, Elsevier, vol. 85(C), pages 12-18.
    17. Grosser, Anna, 2018. "Determination of methane potential of mixtures composed of sewage sludge, organic fraction of municipal waste and grease trap sludge using biochemical methane potential assays. A comparison of BMP tes," Energy, Elsevier, vol. 143(C), pages 488-499.
    18. Anriansyah Renggaman & Hong Lim Choi & Sartika Indah Amalia Sudiarto & Andi Febrisiantosa & Dong Hyoen Ahn & Yong Wook Choung & Arumuganainar Suresh, 2021. "Biochemical Methane Potential of Swine Slaughter Waste, Swine Slurry, and Its Codigestion Effect," Energies, MDPI, vol. 14(21), pages 1-14, October.
    19. Silvestre, G. & Illa, J. & Fernández, B. & Bonmatí, A., 2014. "Thermophilic anaerobic co-digestion of sewage sludge with grease waste: Effect of long chain fatty acids in the methane yield and its dewatering properties," Applied Energy, Elsevier, vol. 117(C), pages 87-94.
    20. Zuo, Zhuang & Wu, Shubiao & Qi, Xiangyang & Dong, Renjie, 2015. "Performance enhancement of leaf vegetable waste in two-stage anaerobic systems under high organic loading rate: Role of recirculation and hydraulic retention time," Applied Energy, Elsevier, vol. 147(C), pages 279-286.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:151:y:2015:i:c:p:249-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.