IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v120y2014icp49-55.html
   My bibliography  Save this article

Technical and operational feasibility of psychrophilic anaerobic digestion biotechnology for processing ammonia-rich waste

Author

Listed:
  • Massé, Daniel I.
  • Rajagopal, Rajinikanth
  • Singh, Gursharan

Abstract

Ammonia nitrogen plays a critical role in the performance and stability of anaerobic digestion (AD) of ammonia rich wastes like animal manure. Nevertheless, inhibition due to high ammonia remains an acute limitation in AD process. A successful long-term operation of AD process at high ammonia (>5gN/L) is limited. This study focused on validating technical feasibility of psychrophilic AD in sequencing batch reactor (PADSBR) to treat swine manure spiked with NH4Cl up to 8.2±0.3gN/L, as a representative of N-rich waste. CODt, CODs, VS removals of 86±3, 82±2 and 73±3% were attained at an OLR of 3gCOD/L.d, respectively. High-ammonia had no effect on methane yields (0.23±0.04L CH4/gTCODfed) and comparable to that of control reactors, which fed with raw swine manure alone (5.5gN/L). Longer solids/hydraulic retention times in PADSBRs enhanced biomass acclimation even at high-ammonia. Thus VFA, an indicator for process stability, did not accumulate in PADSBR. Further investigation is essential to establish the maximum concentrations of TKN and free ammonia that the PADSBR can sustain.

Suggested Citation

  • Massé, Daniel I. & Rajagopal, Rajinikanth & Singh, Gursharan, 2014. "Technical and operational feasibility of psychrophilic anaerobic digestion biotechnology for processing ammonia-rich waste," Applied Energy, Elsevier, vol. 120(C), pages 49-55.
  • Handle: RePEc:eee:appene:v:120:y:2014:i:c:p:49-55
    DOI: 10.1016/j.apenergy.2014.01.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914000531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.01.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. German Smetana & Anna Grosser, 2023. "The Oxygenic Photogranules—Current Progress on the Technology and Perspectives in Wastewater Treatment: A Review," Energies, MDPI, vol. 16(1), pages 1-17, January.
    2. Ortner, Markus & Wöss, David & Schumergruber, Alexander & Pröll, Tobias & Fuchs, Werner, 2015. "Energy self-supply of large abattoir by sustainable waste utilization based on anaerobic mono-digestion," Applied Energy, Elsevier, vol. 143(C), pages 460-471.
    3. Jaime Jaimes-Estévez & German Zafra & Jaime Martí-Herrero & Guillermo Pelaz & Antonio Morán & Alejandra Puentes & Christian Gomez & Liliana del Pilar Castro & Humberto Escalante Hernández, 2020. "Psychrophilic Full Scale Tubular Digester Operating over Eight Years: Complete Performance Evaluation and Microbiological Population," Energies, MDPI, vol. 14(1), pages 1-17, December.
    4. Zheng, Zehui & Liu, Jinhuan & Yuan, Xufeng & Wang, Xiaofen & Zhu, Wanbin & Yang, Fuyu & Cui, Zongjun, 2015. "Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion," Applied Energy, Elsevier, vol. 151(C), pages 249-257.
    5. Yao, Yiqing & Yu, Liang & Ghogare, Rishikesh & Dunsmoor, Alexander & Davaritouchaee, Maryam & Chen, Shulin, 2017. "Simultaneous ammonia stripping and anaerobic digestion for efficient thermophilic conversion of dairy manure at high solids concentration," Energy, Elsevier, vol. 141(C), pages 179-188.
    6. Li, Wangliang & Loh, Kai-Chee & Zhang, Jingxin & Tong, Yen Wah & Dai, Yanjun, 2018. "Two-stage anaerobic digestion of food waste and horticultural waste in high-solid system," Applied Energy, Elsevier, vol. 209(C), pages 400-408.
    7. Yang, Ziyi & Sun, Hangyu & Kurbonova, Malikakhon & Zhou, Ling & Arhin, Samuel Gyebi & Papadakis, Vagelis G. & Goula, Maria A. & Liu, Guangqing & Zhang, Yi & Wang, Wen, 2022. "Simultaneous supplementation of magnetite and polyurethane foam carrier can reach a Pareto-optimal point to alleviate ammonia inhibition during anaerobic digestion," Renewable Energy, Elsevier, vol. 189(C), pages 104-116.
    8. Noori M. Cata Saady & Daniel I. Massé, 2015. "Impact of Organic Loading Rate on Psychrophilic Anaerobic Digestion of Solid Dairy Manure," Energies, MDPI, vol. 8(3), pages 1-18, March.
    9. Fuchs, Werner & Wang, Xuemei & Gabauer, Wolfgang & Ortner, Markus & Li, Zifu, 2018. "Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 186-199.
    10. Yao, Yao & Huang, Gordon & An, Chunjiang & Chen, Xiujuan & Zhang, Peng & Xin, Xiaying & Jian Shen, & Agnew, Joy, 2020. "Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. German Smetana & Ewa Neczaj & Anna Grosser, 2021. "Biomethane Potential of Selected Organic Waste and Sewage Sludge at Different Temperature Regimes," Energies, MDPI, vol. 14(14), pages 1-18, July.
    12. Yan, Yixin & Yan, Miao & Ravenni, Giulia & Angelidaki, Irini & Fu, Dafang & Fotidis, Ioannis A., 2022. "Biochar enhanced bioaugmentation provides long-term tolerance under increasing ammonia toxicity in continuous biogas reactors," Renewable Energy, Elsevier, vol. 195(C), pages 590-597.
    13. Chen, Miao & Liu, Shujun & Yuan, Xufeng & Li, Qing X. & Wang, Fengzhong & Xin, Fengjiao & Wen, Boting, 2021. "Methane production and characteristics of the microbial community in the co-digestion of potato pulp waste and dairy manure amended with biochar," Renewable Energy, Elsevier, vol. 163(C), pages 357-367.
    14. Zhang, Wanqin & Wei, Quanyuan & Wu, Shubiao & Qi, Dandan & Li, Wei & Zuo, Zhuang & Dong, Renjie, 2014. "Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions," Applied Energy, Elsevier, vol. 128(C), pages 175-183.
    15. Ni, Ping & Lyu, Tao & Sun, Hao & Dong, Renjie & Wu, Shubiao, 2017. "Liquid digestate recycled utilization in anaerobic digestion of pig manure: Effect on methane production, system stability and heavy metal mobilization," Energy, Elsevier, vol. 141(C), pages 1695-1704.
    16. Akindolire, Muyiwa Ajoke & Rama, Haripriya & Roopnarain, Ashira, 2022. "Psychrophilic anaerobic digestion: A critical evaluation of microorganisms and enzymes to drive the process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:120:y:2014:i:c:p:49-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.