IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v149y2015icp338-353.html
   My bibliography  Save this article

Analysis of Maisotsenko open gas turbine power cycle with a detailed air saturator model

Author

Listed:
  • Saghafifar, Mohammad
  • Gadalla, Mohamed

Abstract

With ever increasing cost of fossil fuels and natural gas, the improvement in gas turbine power cycle efficiency is needed due to the tremendous savings in fuel consumption. Water/steam injection is considered as one of the most popular power augmentation techniques because of its significant impact on the gas turbine performance. One of the recently suggested evaporative gas turbine cycles is the Maisotsenko open cycle for gas turbine power generation. In this paper, detailed thermodynamic analysis of this cycle is investigated with a thorough air saturator model. A comparative analysis is carried out to signify the advantages and disadvantages of Maisotsenko gas turbine cycle (MGTC) as compared with humid air gas turbine cycles. MGTC performance is evaluated based on a simple recuperated gas turbine cycle. In addition, sensitivity analysis is performed to investigate the effect of different operating parameters on the overall cycle performance. Finally, integrating an air saturator instead of a conventional heat exchanger in recuperated gas turbine cycles enhances the power plant performance such that an efficiency enhancement of 7% points and net specific work output augmentation of 44.4% are obtained.

Suggested Citation

  • Saghafifar, Mohammad & Gadalla, Mohamed, 2015. "Analysis of Maisotsenko open gas turbine power cycle with a detailed air saturator model," Applied Energy, Elsevier, vol. 149(C), pages 338-353.
  • Handle: RePEc:eee:appene:v:149:y:2015:i:c:p:338-353
    DOI: 10.1016/j.apenergy.2015.03.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915004018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.03.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zadpoor, Amir Abbas & Golshan, Ali Hamedani, 2006. "Performance improvement of a gas turbine cycle by using a desiccant-based evaporative cooling system," Energy, Elsevier, vol. 31(14), pages 2652-2664.
    2. Yang, Cheng & Yang, Zeliang & Cai, Ruixian, 2009. "Analytical method for evaluation of gas turbine inlet air cooling in combined cycle power plant," Applied Energy, Elsevier, vol. 86(6), pages 848-856, June.
    3. Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi, 2011. "Effect of various inlet air cooling methods on gas turbine performance," Energy, Elsevier, vol. 36(2), pages 1196-1205.
    4. Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi, 2009. "A new approach for enhancing performance of a gas turbine (case study: Khangiran refinery)," Applied Energy, Elsevier, vol. 86(12), pages 2750-2759, December.
    5. Jonsson, Maria & Yan, Jinyue, 2005. "Humidified gas turbines—a review of proposed and implemented cycles," Energy, Elsevier, vol. 30(7), pages 1013-1078.
    6. Bassily, A. M., 2004. "Performance improvements of the intercooled reheat recuperated gas-turbine cycle using absorption inlet-cooling and evaporative after-cooling," Applied Energy, Elsevier, vol. 77(3), pages 249-272, March.
    7. Poullikkas, Andreas, 2005. "An overview of current and future sustainable gas turbine technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(5), pages 409-443, October.
    8. Wang, Zidong & Chen, Hanping & Weng, Shilie, 2013. "New calculation method for thermodynamic properties of humid air in humid air turbine cycle – The general model and solutions for saturated humid air," Energy, Elsevier, vol. 58(C), pages 606-616.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Xamán, J. & Bassam, A., 2018. "An innovative air saturator for humidification-dehumidification desalination application," Applied Energy, Elsevier, vol. 228(C), pages 789-807.
    2. Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic evaluation of water-injected air bottoming cycles hybridization using heliostat field collector: Comparative analyses," Energy, Elsevier, vol. 119(C), pages 1230-1246.
    3. Jan Taler & Bartosz Jagieła & Magdalena Jaremkiewicz, 2022. "Overview of the M-Cycle Technology for Air Conditioning and Cooling Applications," Energies, MDPI, vol. 15(5), pages 1-19, March.
    4. Zhu, Guangya & Chow, T.T. & Fong, K.F. & Lee, C.K., 2019. "Comparative study on humidified gas turbine cycles with different air saturator designs," Applied Energy, Elsevier, vol. 254(C).
    5. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    6. Wang, Yuzhang & Zhang, Qing & Li, Yixing & He, Ming & Weng, Shilie, 2022. "Research on the effectiveness of the key components in the HAT cycle," Applied Energy, Elsevier, vol. 306(PB).
    7. Zhang, Qing & Wang, Yuzhang & Jiang, Jiangjun & Weng, Shilie & Cao, Xiuling, 2022. "Coupling effect of key parameters of heat recovery components on the HAT cycle performance," Energy, Elsevier, vol. 238(PC).
    8. Barakat, S. & Ramzy, Ahmed & Hamed, A.M. & El-Emam, S.H., 2019. "Augmentation of gas turbine performance using integrated EAHE and Fogging Inlet Air Cooling System," Energy, Elsevier, vol. 189(C).
    9. Zhu, Guangya & Wen, Tao & Wang, Qunwei & Xu, Xiaoyu, 2022. "A review of dew-point evaporative cooling: Recent advances and future development," Applied Energy, Elsevier, vol. 312(C).
    10. Samanta, Samiran & Roy, Dibyendu & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Techno-economic analysis of a fuel-cell driven integrated energy hub for decarbonising transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    11. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Livas-García, A. & Xamán, J. & Bassam, A. & Maisotsenko, Valeriy, 2021. "Projecting global water footprints diminution of a dew-point cooling system: Sustainability approach assisted with energetic and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    12. Taimoor, Aqeel Ahmad & Muhammad, Ayyaz & Saleem, Waqas & Zain-ul-abdein, Muhammad, 2016. "Humidified exhaust recirculation for efficient combined cycle gas turbines," Energy, Elsevier, vol. 106(C), pages 356-366.
    13. Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic optimization of hybrid solar Maisotsenko bottoming cycles using heliostat field collector: Comparative analysis," Applied Energy, Elsevier, vol. 190(C), pages 686-702.
    14. De Paepe, Ward & Pappa, Alessio & Montero Carrero, Marina & Bricteux, Laurent & Contino, Francesco, 2020. "Reducing waste heat to the minimum: Thermodynamic assessment of the M-power cycle concept applied to micro Gas Turbines," Applied Energy, Elsevier, vol. 279(C).
    15. Zhang, Qing & He, Ming & Wang, Yuzhang & Weng, Shilie, 2020. "Analysis of air humidification process for humid air turbine cycle with a detailed air humidifier model," Applied Energy, Elsevier, vol. 279(C).
    16. Andrii Radchenko & Eugeniy Trushliakov & Krzysztof Kosowski & Dariusz Mikielewicz & Mykola Radchenko, 2020. "Innovative Turbine Intake Air Cooling Systems and Their Rational Designing," Energies, MDPI, vol. 13(23), pages 1-22, November.
    17. Mossi Idrissa, A.K. & Goni Boulama, K., 2017. "Investigation of the performance of a combined Brayton/Brayton cycle with humidification," Energy, Elsevier, vol. 141(C), pages 492-505.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahdi Deymi-Dashtebayaz & Parisa Kazemiani-Najafabad, 2019. "Energy, Exergy, Economic, and Environmental analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery," Energy & Environment, , vol. 30(3), pages 481-498, May.
    2. Singh, Omendra Kumar, 2016. "Performance enhancement of combined cycle power plant using inlet air cooling by exhaust heat operated ammonia-water absorption refrigeration system," Applied Energy, Elsevier, vol. 180(C), pages 867-879.
    3. Kyoung Hoon Kim & Kyoungjin Kim, 2012. "Exergy Analysis of Overspray Process in Gas Turbine Systems," Energies, MDPI, vol. 5(8), pages 1-14, July.
    4. Saghafifar, Mohammad & Gadalla, Mohamed, 2015. "Innovative inlet air cooling technology for gas turbine power plants using integrated solid desiccant and Maisotsenko cooler," Energy, Elsevier, vol. 87(C), pages 663-677.
    5. Guerra, Omar J. & Reklaitis, Gintaras V., 2018. "Advances and challenges in water management within energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4009-4019.
    6. Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi, 2011. "Effect of various inlet air cooling methods on gas turbine performance," Energy, Elsevier, vol. 36(2), pages 1196-1205.
    7. Mohammad Reza Majdi Yazdi & Mehdi Aliehyaei & Marc A. Rosen, 2015. "Exergy, Economic and Environmental Analyses of Gas Turbine Inlet Air Cooling with a Heat Pump Using a Novel System Configuration," Sustainability, MDPI, vol. 7(10), pages 1-28, October.
    8. Wang, Yuzhang & Zhang, Qing & Li, Yixing & He, Ming & Weng, Shilie, 2022. "Research on the effectiveness of the key components in the HAT cycle," Applied Energy, Elsevier, vol. 306(PB).
    9. Zhang, Qing & He, Ming & Wang, Yuzhang & Weng, Shilie, 2020. "Experimental analysis of the air humidification process for humid air turbine cycle using a two-phase measurement system," Applied Energy, Elsevier, vol. 279(C).
    10. Nematollahi, Mehran & Porkhial, Soheil & Hassanabad, Madjid Ghodsi, 2022. "Using two novel integrated systems to cool the air toward the ISO condition at the gas turbine inlet," Energy, Elsevier, vol. 243(C).
    11. Taimoor, Aqeel Ahmad & Muhammad, Ayyaz & Saleem, Waqas & Zain-ul-abdein, Muhammad, 2016. "Humidified exhaust recirculation for efficient combined cycle gas turbines," Energy, Elsevier, vol. 106(C), pages 356-366.
    12. Ehyaei, M.A. & Mozafari, A. & Alibiglou, M.H., 2011. "Exergy, economic & environmental (3E) analysis of inlet fogging for gas turbine power plant," Energy, Elsevier, vol. 36(12), pages 6851-6861.
    13. Anwar Hamdan Al Assaf & Abdulkarem Amhamed & Odi Fawwaz Alrebei, 2022. "State of the Art in Humidified Gas Turbine Configurations," Energies, MDPI, vol. 15(24), pages 1-32, December.
    14. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    15. Chacartegui, R. & Sánchez, D. & Muñoz, J.M. & Sánchez, T., 2009. "Alternative ORC bottoming cycles FOR combined cycle power plants," Applied Energy, Elsevier, vol. 86(10), pages 2162-2170, October.
    16. Park, Min Young & Shin, Serin & Kim, Eung Soo, 2015. "Effective energy management by combining gas turbine cycles and forward osmosis desalination process," Applied Energy, Elsevier, vol. 154(C), pages 51-61.
    17. Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic optimization of hybrid solar Maisotsenko bottoming cycles using heliostat field collector: Comparative analysis," Applied Energy, Elsevier, vol. 190(C), pages 686-702.
    18. Kayadelen, Hasan Kayhan & Ust, Yasin & Bashan, Veysi, 2021. "Thermodynamic performance analysis of state of the art gas turbine cycles with inter-stage turbine reheat and steam injection," Energy, Elsevier, vol. 222(C).
    19. Hassan Athari & Saeed Soltani & Marc A. Rosen & Seyed Mohammad Seyed Mahmoudi & Tatiana Morosuk, 2015. "Comparative Exergoeconomic Analyses of Gas Turbine Steam Injection Cycles with and without Fogging Inlet Cooling," Sustainability, MDPI, vol. 7(9), pages 1-22, September.
    20. Xiao, Runke & Yang, Cheng & Qi, Hanjie & Ma, Xiaoqian, 2023. "Synergetic performance of gas turbine combined cycle unit with inlet cooled by quasi-isobaric ACAES exhaust," Applied Energy, Elsevier, vol. 352(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:149:y:2015:i:c:p:338-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.