IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v30y2019i3p481-498.html
   My bibliography  Save this article

Energy, Exergy, Economic, and Environmental analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery

Author

Listed:
  • Mahdi Deymi-Dashtebayaz
  • Parisa Kazemiani-Najafabad

Abstract

In this paper, the effects of various compressor inlet air cooling methods to increase the performance of Shahid Hashemi-Nezhad gas turbines refinery were investigated. These methods included media, fogging, and absorption chillers as common inlet air cooling methods and pressure drop station as novel cooling method. By using the exergy, environmental, and economic analysis, the best method for compressor inlet air cooling was selected. Based on the results, the absorption chiller system had the highest compressor inlet air temperature drop and increased the thermal and exergy efficiencies of cycle by about 2.5 and 3%, respectively, in hot season. Using absorption chiller, pressure drop station, fogging, and media had further reduction in CO 2 and CO than simple gas turbine, respectively. Finally based on the net present value and internal rate of return coefficients, the pressure drop station method is the most economically feasible option.

Suggested Citation

  • Mahdi Deymi-Dashtebayaz & Parisa Kazemiani-Najafabad, 2019. "Energy, Exergy, Economic, and Environmental analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery," Energy & Environment, , vol. 30(3), pages 481-498, May.
  • Handle: RePEc:sae:engenv:v:30:y:2019:i:3:p:481-498
    DOI: 10.1177/0958305X18793112
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X18793112
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X18793112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zadpoor, Amir Abbas & Golshan, Ali Hamedani, 2006. "Performance improvement of a gas turbine cycle by using a desiccant-based evaporative cooling system," Energy, Elsevier, vol. 31(14), pages 2652-2664.
    2. Kakaras, E. & Doukelis, A. & Karellas, S., 2004. "Compressor intake-air cooling in gas turbine plants," Energy, Elsevier, vol. 29(12), pages 2347-2358.
    3. Najjar, Yousef S.H. & Abubaker, Ahmad M. & El-Khalil, Ahmad F.S., 2015. "Novel inlet air cooling with gas turbine engines using cascaded waste-heat recovery for green sustainable energy," Energy, Elsevier, vol. 93(P1), pages 770-785.
    4. Shirazi, Ali & Najafi, Behzad & Aminyavari, Mehdi & Rinaldi, Fabio & Taylor, Robert A., 2014. "Thermal–economic–environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling," Energy, Elsevier, vol. 69(C), pages 212-226.
    5. Perez-Blanco, H. & Kim, Kyoung-Hoon & Ream, Stephen, 2007. "Evaporatively-cooled compression using a high-pressure refrigerant," Applied Energy, Elsevier, vol. 84(10), pages 1028-1043, October.
    6. Jonsson, Maria & Yan, Jinyue, 2005. "Humidified gas turbines—a review of proposed and implemented cycles," Energy, Elsevier, vol. 30(7), pages 1013-1078.
    7. Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi, 2011. "Effect of various inlet air cooling methods on gas turbine performance," Energy, Elsevier, vol. 36(2), pages 1196-1205.
    8. Mohapatra, Alok Ku & Sanjay,, 2014. "Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance," Energy, Elsevier, vol. 68(C), pages 191-203.
    9. Bassily, A. M., 2004. "Performance improvements of the intercooled reheat recuperated gas-turbine cycle using absorption inlet-cooling and evaporative after-cooling," Applied Energy, Elsevier, vol. 77(3), pages 249-272, March.
    10. Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi, 2009. "A new approach for enhancing performance of a gas turbine (case study: Khangiran refinery)," Applied Energy, Elsevier, vol. 86(12), pages 2750-2759, December.
    11. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    12. Ehyaei, M.A. & Mozafari, A. & Alibiglou, M.H., 2011. "Exergy, economic & environmental (3E) analysis of inlet fogging for gas turbine power plant," Energy, Elsevier, vol. 36(12), pages 6851-6861.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad M. Abubaker & Adnan Darwish Ahmad & Binit B. Singh & Yaman M. Manaserh & Loiy Al-Ghussain & Nelson K. Akafuah & Kozo Saito, 2024. "Energy and Environmental Analyses of a Solar–Gas Turbine Combined Cycle with Inlet Air Cooling," Sustainability, MDPI, vol. 16(14), pages 1-31, July.
    2. Dabwan, Yousef N. & Zhang, Liang & Pei, Gang, 2023. "A novel inlet air cooling system to improve the performance of intercooled gas turbine combined cycle power plants in hot regions," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dabwan, Yousef N. & Zhang, Liang & Pei, Gang, 2023. "A novel inlet air cooling system to improve the performance of intercooled gas turbine combined cycle power plants in hot regions," Energy, Elsevier, vol. 283(C).
    2. Nematollahi, Mehran & Porkhial, Soheil & Hassanabad, Madjid Ghodsi, 2022. "Using two novel integrated systems to cool the air toward the ISO condition at the gas turbine inlet," Energy, Elsevier, vol. 243(C).
    3. Taimoor, Aqeel Ahmad & Muhammad, Ayyaz & Saleem, Waqas & Zain-ul-abdein, Muhammad, 2016. "Humidified exhaust recirculation for efficient combined cycle gas turbines," Energy, Elsevier, vol. 106(C), pages 356-366.
    4. Saghafifar, Mohammad & Gadalla, Mohamed, 2015. "Analysis of Maisotsenko open gas turbine power cycle with a detailed air saturator model," Applied Energy, Elsevier, vol. 149(C), pages 338-353.
    5. Kyoung Hoon Kim & Kyoungjin Kim, 2012. "Exergy Analysis of Overspray Process in Gas Turbine Systems," Energies, MDPI, vol. 5(8), pages 1-14, July.
    6. Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi, 2011. "Effect of various inlet air cooling methods on gas turbine performance," Energy, Elsevier, vol. 36(2), pages 1196-1205.
    7. Mohammad Reza Majdi Yazdi & Mehdi Aliehyaei & Marc A. Rosen, 2015. "Exergy, Economic and Environmental Analyses of Gas Turbine Inlet Air Cooling with a Heat Pump Using a Novel System Configuration," Sustainability, MDPI, vol. 7(10), pages 1-28, October.
    8. Singh, Omendra Kumar, 2016. "Performance enhancement of combined cycle power plant using inlet air cooling by exhaust heat operated ammonia-water absorption refrigeration system," Applied Energy, Elsevier, vol. 180(C), pages 867-879.
    9. Ehyaei, M.A. & Mozafari, A. & Alibiglou, M.H., 2011. "Exergy, economic & environmental (3E) analysis of inlet fogging for gas turbine power plant," Energy, Elsevier, vol. 36(12), pages 6851-6861.
    10. Saghafifar, Mohammad & Gadalla, Mohamed, 2015. "Innovative inlet air cooling technology for gas turbine power plants using integrated solid desiccant and Maisotsenko cooler," Energy, Elsevier, vol. 87(C), pages 663-677.
    11. Matjanov, Erkinjon, 2020. "Gas turbine efficiency enhancement using absorption chiller. Case study for Tashkent CHP," Energy, Elsevier, vol. 192(C).
    12. Abubaker, Ahmad M. & Darwish Ahmad, Adnan & Salaimeh, Ahmad A. & Akafuah, Nelson K. & Saito, Kozo, 2022. "A novel solar combined cycle integration: An exergy-based optimization using artificial neural network," Renewable Energy, Elsevier, vol. 181(C), pages 914-932.
    13. ZhiTan Liu & XiaoDong Ren & ZhiYuan Yan & HongFei Zhu & Tao Zhang & Wei Zhu & XueSong Li, 2019. "Effect of Inlet Air Heating on Gas Turbine Efficiency under Partial Load," Energies, MDPI, vol. 12(17), pages 1-11, August.
    14. Anwar Hamdan Al Assaf & Abdulkarem Amhamed & Odi Fawwaz Alrebei, 2022. "State of the Art in Humidified Gas Turbine Configurations," Energies, MDPI, vol. 15(24), pages 1-32, December.
    15. Guerra, Omar J. & Reklaitis, Gintaras V., 2018. "Advances and challenges in water management within energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4009-4019.
    16. Wang, Ke & Fan, Wei & Lu, Wei & Chen, Fan & Zhang, Qibin & Yan, Chuanjun, 2014. "Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process," Energy, Elsevier, vol. 71(C), pages 605-614.
    17. Hassan Athari & Saeed Soltani & Marc A. Rosen & Seyed Mohammad Seyed Mahmoudi & Tatiana Morosuk, 2015. "Comparative Exergoeconomic Analyses of Gas Turbine Steam Injection Cycles with and without Fogging Inlet Cooling," Sustainability, MDPI, vol. 7(9), pages 1-22, September.
    18. Barakat, S. & Ramzy, Ahmed & Hamed, A.M. & El-Emam, S.H., 2019. "Augmentation of gas turbine performance using integrated EAHE and Fogging Inlet Air Cooling System," Energy, Elsevier, vol. 189(C).
    19. Saedi, Ali & Jahangiri, Ali & Ameri, Mohammad & Asadi, Farzad, 2022. "Feasibility study and 3E analysis of blowdown heat recovery in a combined cycle power plant for utilization in Organic Rankine Cycle and greenhouse heating," Energy, Elsevier, vol. 260(C).
    20. Wang, Yuzhang & Zhang, Qing & Li, Yixing & He, Ming & Weng, Shilie, 2022. "Research on the effectiveness of the key components in the HAT cycle," Applied Energy, Elsevier, vol. 306(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:30:y:2019:i:3:p:481-498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.