IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v195y2020ics0360544220301766.html
   My bibliography  Save this article

The application of fly ash gasification for purifying the raw syngas in an industrial-scale entrained flow gasifier

Author

Listed:
  • Fang, Neng
  • Li, Zhengqi
  • Xie, Cheng
  • Liu, Shuxuan
  • Zeng, Lingyan
  • Chen, Zhichao
  • Zhang, Bin

Abstract

A fly ash entrained flow gasification process was developed to simultaneously remove and utilize fly ash in the raw syngas coming directly from fluidized and fixed bed gasifiers. The present in situ experiments at a full load of 80,000 Nm3/h showed that, compared to the raw syngas, the effective syngas (CO + H2) concentration in the purified syngas was slightly decreased, from 72.98% to 72.63%. In contrast, the average mass fraction of carbon in the fly ash was greatly reduced, from 29.5% to below 2%. This gasification process was determined to rapidly heat the entirety of the raw syngas to more than 1285 °C based on fast combustion of a small quantity of the raw syngas and all of the gasifying agent. Thermal analysis showed that the initial gasification temperature of the raw syngas was 1985 °C. Heat loss from the purified syngas was 20.6% of the fuel heat quantity, while the heat loss from unburned combustible gas accounted for 75.1%. Laboratory-scale airflow experiments were also conducted to determine the volume concentration distribution of the gasifying agent at the outlet of a single burner.

Suggested Citation

  • Fang, Neng & Li, Zhengqi & Xie, Cheng & Liu, Shuxuan & Zeng, Lingyan & Chen, Zhichao & Zhang, Bin, 2020. "The application of fly ash gasification for purifying the raw syngas in an industrial-scale entrained flow gasifier," Energy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220301766
    DOI: 10.1016/j.energy.2020.117069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220301766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haolie li, & Shen, Shuguang & Shi, Zhaoyi & Shan, Weiwei & Chang, Sujie & Guo, Chenyuan & Bai, Yonghui & Yan, Lunjing & li, Fan, 2019. "Effect of the upstream gas on the evolved coal gas in the dry distillation zone of the fixed bed gasifier," Energy, Elsevier, vol. 180(C), pages 421-428.
    2. Lee, Jae Chul & Lee, Hyeon Hui & Joo, Yong Jin & Lee, Chang Ha & Oh, Min, 2014. "Process simulation and thermodynamic analysis of an IGCC (integrated gasification combined cycle) plant with an entrained coal gasifier," Energy, Elsevier, vol. 64(C), pages 58-68.
    3. Li, Fenghai & Li, Zhenzhu & Huang, Jiejie & Fang, Yitian, 2014. "Understanding mineral behaviors during anthracite fluidized-bed gasification based on slag characteristics," Applied Energy, Elsevier, vol. 131(C), pages 279-287.
    4. Wang, Haopeng & Chen, Zhichao & Zhang, Bin & Zeng, Lingyan & Li, Zhengqi & Zhang, Xiaoyan & Fang, Neng & Liu, Xiaoying, 2019. "Thermal-calculation method for entrained-flow coal gasifiers," Energy, Elsevier, vol. 166(C), pages 373-379.
    5. Zeng, Xi & Wang, Fang & Li, Hongling & Wang, Yin & Dong, Li & Yu, Jian & Xu, Guangwen, 2014. "Pilot verification of a low-tar two-stage coal gasification process with a fluidized bed pyrolyzer and fixed bed gasifier," Applied Energy, Elsevier, vol. 115(C), pages 9-16.
    6. Chen, Hongfang & Namioka, Tomoaki & Yoshikawa, Kunio, 2011. "Characteristics of tar, NOx precursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge," Applied Energy, Elsevier, vol. 88(12), pages 5032-5041.
    7. Wang, Qingxiang & Chen, Zhichao & Che, Miaomiao & Zeng, Lingyan & Li, Zhengqi & Song, Minhang, 2016. "Effect of different inner secondary-air vane angles on combustion characteristics of primary combustion zone for a down-fired 300-MWe utility boiler with overfire air," Applied Energy, Elsevier, vol. 182(C), pages 29-38.
    8. Zeng, Lingyan & Li, Zhengqi & Zhao, Guangbo & Li, Jing & Zhang, Fucheng & Shen, Shanping & Chen, Lizhe, 2011. "The influence of swirl burner structure on the gas/particle flow characteristics," Energy, Elsevier, vol. 36(10), pages 6184-6194.
    9. Chen, Zhichao & Li, Zhengqi & Zhu, Qunyi & Jing, Jianping, 2011. "Gas/particle flow and combustion characteristics and NOx emissions of a new swirl coal burner," Energy, Elsevier, vol. 36(2), pages 709-723.
    10. Zhou, Hua & Xie, Taili & You, Fengqi, 2018. "On-line simulation and optimization of a commercial-scale shell entrained-flow gasifier using a novel dynamic reduced order model," Energy, Elsevier, vol. 149(C), pages 516-534.
    11. Watanabe, Hiroaki & Ahn, Seongyool & Tanno, Kenji, 2017. "Numerical investigation of effects of CO2 recirculation in an oxy-fuel IGCC on gasification characteristics of a two-stage entrained flow coal gasifier," Energy, Elsevier, vol. 118(C), pages 181-189.
    12. Fang, Neng & Li, Zhengqi & Wang, Jiaquan & Zhang, Bin & Zeng, Lingyan & Chen, Zhichao & Wang, Haopeng & Liu, Xiaoying & Zhang, Xiaoyan, 2018. "Experimental investigations on air/particle flow characteristics in a 2000 t/d GSP pulverized coal gasifier with an improved burner," Energy, Elsevier, vol. 165(PB), pages 432-441.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Yue & Li, Zhengqi & Jiang, Guangfei & Huang, Chunchao & Chen, Zhichao, 2024. "Study on mixing performance of atmospheric entrained flow gasification burner using fine ash as feedstock," Energy, Elsevier, vol. 292(C).
    2. Fang, Neng & Li, Zhengqi & Liu, Shuxuan & Xie, Cheng & Zeng, Lingyan & Chen, Zhichao, 2021. "Experimental air/particle flow characteristics of an 80,000 Nm3/h fly ash entrained-flow gasifier with different multi-burner arrangements," Energy, Elsevier, vol. 215(PB).
    3. Fang, Neng & Li, Zhengqi & Xie, Cheng & Liu, Shuxuan & Lu, Yue & Zeng, Lingyan & Chen, Zhichao, 2021. "Influence of the multi-burner bias angle on the air/particle flow characteristics in an improved fly ash entrained-flow gasifier," Energy, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Neng & Li, Zhengqi & Xie, Cheng & Liu, Shuxuan & Lu, Yue & Zeng, Lingyan & Chen, Zhichao, 2021. "Influence of the multi-burner bias angle on the air/particle flow characteristics in an improved fly ash entrained-flow gasifier," Energy, Elsevier, vol. 234(C).
    2. Fang, Neng & Li, Zhengqi & Liu, Shuxuan & Xie, Cheng & Zeng, Lingyan & Chen, Zhichao, 2021. "Experimental air/particle flow characteristics of an 80,000 Nm3/h fly ash entrained-flow gasifier with different multi-burner arrangements," Energy, Elsevier, vol. 215(PB).
    3. Unyaphan, Siriwat & Tarnpradab, Thanyawan & Takahashi, Fumitake & Yoshikawa, Kunio, 2017. "Improvement of tar removal performance of oil scrubber by producing syngas microbubbles," Applied Energy, Elsevier, vol. 205(C), pages 802-812.
    4. Chen, Zhichao & Qiao, Yanyu & Guan, Shuo & Wang, Zhenwang & Zheng, Yu & Zeng, Lingyan & Li, Zhengqi, 2022. "Effect of inner and outer secondary air ratios on ignition, C and N conversion process of pulverized coal in swirl burner under sub-stoichiometric ratio," Energy, Elsevier, vol. 239(PD).
    5. Yuan, Zhenhua & Chen, Zhichao & Bian, Liguo & Li, Zhengqi, 2023. "Influence of over-fired air location on gas-particle flow characteristics within a coal-fired industrial boiler under radial air staging," Energy, Elsevier, vol. 283(C).
    6. Liu, Chunlong & Li, Zhengqi & Jing, Xinjing & Xie, Yiquan & Zhang, Qinghua & Zong, Qiudong, 2014. "Experimental investigation into gas/particle flow in a down-fired 350 MWe supercritical utility boiler at different over-fire air ratios," Energy, Elsevier, vol. 64(C), pages 771-778.
    7. Lu, Yue & Li, Zhengqi & Jiang, Guangfei & Huang, Chunchao & Chen, Zhichao, 2024. "Study on mixing performance of atmospheric entrained flow gasification burner using fine ash as feedstock," Energy, Elsevier, vol. 292(C).
    8. Zhou, Hua & Xie, Taili & You, Fengqi, 2018. "On-line simulation and optimization of a commercial-scale shell entrained-flow gasifier using a novel dynamic reduced order model," Energy, Elsevier, vol. 149(C), pages 516-534.
    9. Yan, Rong & Chen, Zhichao & Zhang, Bo & Zheng, Yu & Li, Zhengqi, 2022. "Impact of radial air staging on gas-particle flow characteristics in an industrial pulverized coal boiler," Energy, Elsevier, vol. 243(C).
    10. Fang, Neng & Li, Zhengqi & Wang, Jiaquan & Zhang, Bin & Zeng, Lingyan & Chen, Zhichao & Wang, Haopeng & Liu, Xiaoying & Zhang, Xiaoyan, 2018. "Experimental investigations on air/particle flow characteristics in a 2000 t/d GSP pulverized coal gasifier with an improved burner," Energy, Elsevier, vol. 165(PB), pages 432-441.
    11. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    12. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    13. Xiang, Dong & Xiang, Junjie & Sun, Zhe & Cao, Yan, 2017. "The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization," Energy, Elsevier, vol. 140(P1), pages 78-91.
    14. Wang, Qingxiang & Chen, Zhichao & Han, Hui & Zeng, Lingyan & Li, Zhengqi, 2019. "Experimental characterization of anthracite combustion and NOx emission for a 300-MWe down-fired boiler with a novel combustion system: Influence of primary and vent air distributions," Applied Energy, Elsevier, vol. 238(C), pages 1551-1562.
    15. Li, Fenghai & Liu, Quanrun & Li, Meng & Fang, Yitian, 2018. "Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics," Energy, Elsevier, vol. 150(C), pages 142-152.
    16. Luo, Lei & Zhang, Hai & Jiao, Anyao & Jiang, Yuanzhen & Liu, Jiaxun & Jiang, Xiumin & Tian, Feng, 2019. "Study on the formation and dissipation mechanism of gas phase products during rapid pyrolysis of superfine pulverized coal in entrained flow reactor," Energy, Elsevier, vol. 173(C), pages 985-994.
    17. Kim, Mukyeong & Ye, Insoo & Jo, Hyunbin & Ryu, Changkook & Kim, Bongkeun & Lee, Jeongsoo, 2020. "New reduced-order model optimized for online dynamic simulation of a Shell coal gasifier," Applied Energy, Elsevier, vol. 263(C).
    18. Fang, Shiwen & Deng, Zhengbing & Lin, Yan & Huang, Zhen & Ding, Lixing & Deng, Lisheng & Huang, Hongyu, 2021. "Nitrogen migration in sewage sludge chemical looping gasification using copper slag modified by NiO as an oxygen carrier," Energy, Elsevier, vol. 228(C).
    19. Wang, Fang & Zeng, Xi & Sun, Yanlin & Zhang, Juwei & Zhao, Zhigang & Wang, Yonggang & Xu, Guangwen, 2015. "Jetting pre-oxidation fluidized bed gasification process for caking coal: Fundamentals and pilot test," Applied Energy, Elsevier, vol. 160(C), pages 80-87.
    20. Wang, Chao & Zhu, Lianfeng & Zhang, Mengjuan & Han, Zhennan & Jia, Xin & Bai, Dingrong & Duo, Wenli & Bi, Xiaotao & Abudula, Abuliti & Guan, Guoqing & Xu, Guangwen, 2022. "A two-stage circulated fluidized bed process to minimize tar generation of biomass gasification for fuel gas production," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220301766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.