Study of adsorption characteristics in silica gel–water adsorption refrigeration
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2013.08.011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Voyiatzis, Evangelos & Palyvos, J.A. & Markatos, Nikolaos-Christos, 2008. "Heat-exchanger design and switching-frequency effects on the performance of a continuous type solar adsorption chiller," Applied Energy, Elsevier, vol. 85(12), pages 1237-1250, December.
- Saha, B.B & Akisawa, A & Kashiwagi, T, 2001. "Solar/waste heat driven two-stage adsorption chiller: the prototype," Renewable Energy, Elsevier, vol. 23(1), pages 93-101.
- Chen, C.J. & Wang, R.Z. & Xia, Z.Z. & Kiplagat, J.K. & Lu, Z.S., 2010. "Study on a compact silica gel-water adsorption chiller without vacuum valves: Design and experimental study," Applied Energy, Elsevier, vol. 87(8), pages 2673-2681, August.
- Choudhury, Biplab & Saha, Bidyut Baran & Chatterjee, Pradip K. & Sarkar, Jyoti Prakas, 2013. "An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling," Applied Energy, Elsevier, vol. 104(C), pages 554-567.
- Khan, M.Z.I. & Alam, K.C.A. & Saha, B.B. & Akisawa, A. & Kashiwagi, T., 2008. "Performance evaluation of multi-stage, multi-bed adsorption chiller employing re-heat scheme," Renewable Energy, Elsevier, vol. 33(1), pages 88-98.
- Li, S. & Wu, J.Y., 2009. "Theoretical research of a silica gel-water adsorption chiller in a micro combined cooling, heating and power (CCHP) system," Applied Energy, Elsevier, vol. 86(6), pages 958-967, June.
- Henninger, S.K. & Munz, G. & Ratzsch, K.-F. & Schossig, P., 2011. "Cycle stability of sorption materials and composites for the use in heat pumps and cooling machines," Renewable Energy, Elsevier, vol. 36(11), pages 3043-3049.
- Wang, D.C. & Li, Y.H. & Li, D. & Xia, Y.Z. & Zhang, J.P., 2010. "A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 344-353, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dias, João M.S. & Costa, Vítor A.F., 2019. "Which dimensional model for the analysis of a coated tube adsorber for adsorption heat pumps?," Energy, Elsevier, vol. 174(C), pages 1110-1120.
- Solmuş, İsmail & Yamalı, Cemil & Yıldırım, Cihan & Bilen, Kadir, 2015. "Transient behavior of a cylindrical adsorbent bed during the adsorption process," Applied Energy, Elsevier, vol. 142(C), pages 115-124.
- Wang, Yunfeng & Li, Ming & Ji, Xu & Yu, Qiongfen & Li, Guoliang & Ma, Xun, 2018. "Experimental study of the effect of enhanced mass transfer on the performance improvement of a solar-driven adsorption refrigeration system," Applied Energy, Elsevier, vol. 224(C), pages 417-425.
- Lu, Zisheng & Wang, Ruzhu, 2016. "Experimental performance study of sorption refrigerators driven by waste gases from fishing vessels diesel engine," Applied Energy, Elsevier, vol. 174(C), pages 224-231.
- Mlonka-Mędrala, Agata & Dziok, Tadeusz & Magdziarz, Aneta & Nowak, Wojciech, 2021. "Composition and properties of fly ash collected from a multifuel fluidized bed boiler co-firing refuse derived fuel (RDF) and hard coal," Energy, Elsevier, vol. 234(C).
- Hassan, H.Z. & Mohamad, A.A. & Al-Ansary, H.A. & Alyousef, Y.M., 2014. "Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle," Energy, Elsevier, vol. 77(C), pages 852-858.
- Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2016. "Modeling and parametric analysis of an adsorber unit for thermal energy storage," Energy, Elsevier, vol. 102(C), pages 83-94.
- Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2014. "Review and future trends of solar adsorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 102-123.
- Yang, Yan & Wen, Chuang & Wang, Shuli & Feng, Yuqing, 2014. "Theoretical and numerical analysis on pressure recovery of supersonic separators for natural gas dehydration," Applied Energy, Elsevier, vol. 132(C), pages 248-253.
- Najjaran, Ahmad & Freeman, James & Ramos, Alba & Markides, Christos N., 2019. "Experimental investigation of an ammonia-water-hydrogen diffusion absorption refrigerator," Applied Energy, Elsevier, vol. 256(C).
- Hassan Zohair Hassan, 2014. "Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair," Energies, MDPI, vol. 7(10), pages 1-19, October.
- Teng, W.S. & Leong, K.C. & Chakraborty, A., 2016. "Revisiting adsorption cooling cycle from mathematical modelling to system development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 315-332.
- Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- El Fadar, Abdellah, 2015. "Thermal behavior and performance assessment of a solar adsorption cooling system with finned adsorber," Energy, Elsevier, vol. 83(C), pages 674-684.
- Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Dechang & Zhang, Jipeng & Tian, Xiaoliang & Liu, Dawei & Sumathy, K., 2014. "Progress in silica gel–water adsorption refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 85-104.
- Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
- Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
- Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
- Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
- Li, Ang & Ismail, Azhar Bin & Thu, Kyaw & Ng, Kim Choon & Loh, Wai Soong, 2014. "Performance evaluation of a zeolite–water adsorption chiller with entropy analysis of thermodynamic insight," Applied Energy, Elsevier, vol. 130(C), pages 702-711.
- Santori, Giulio & Sapienza, Alessio & Freni, Angelo, 2012. "A dynamic multi-level model for adsorptive solar cooling," Renewable Energy, Elsevier, vol. 43(C), pages 301-312.
- Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
- Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
- Sapienza, Alessio & Gullì, Giuseppe & Calabrese, Luigi & Palomba, Valeria & Frazzica, Andrea & Brancato, Vincenza & La Rosa, Davide & Vasta, Salvatore & Freni, Angelo & Bonaccorsi, Lucio & Cacciola, G, 2016. "An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers," Applied Energy, Elsevier, vol. 179(C), pages 929-938.
- Zhao, Y.L. & Hu, Eric & Blazewicz, Antoni, 2012. "A non-uniform pressure and transient boundary condition based dynamic modeling of the adsorption process of an adsorption refrigeration tube," Applied Energy, Elsevier, vol. 90(1), pages 280-287.
- Santamaria, Salvatore & Sapienza, Alessio & Frazzica, Andrea & Freni, Angelo & Girnik, Ilya S. & Aristov, Yuri I., 2014. "Water adsorption dynamics on representative pieces of real adsorbers for adsorptive chillers," Applied Energy, Elsevier, vol. 134(C), pages 11-19.
- Alahmer, Ali & Wang, Xiaolin & Al-Rbaihat, Raed & Amanul Alam, K.C. & Saha, B.B., 2016. "Performance evaluation of a solar adsorption chiller under different climatic conditions," Applied Energy, Elsevier, vol. 175(C), pages 293-304.
- Mitra, Sourav & Thu, Kyaw & Saha, Bidyut Baran & Dutta, Pradip, 2017. "Performance evaluation and determination of minimum desorption temperature of a two-stage air cooled silica gel/water adsorption system," Applied Energy, Elsevier, vol. 206(C), pages 507-518.
- Sapienza, Alessio & Santamaria, Salvatore & Frazzica, Andrea & Freni, Angelo & Aristov, Yuri I., 2014. "Dynamic study of adsorbers by a new gravimetric version of the Large Temperature Jump method," Applied Energy, Elsevier, vol. 113(C), pages 1244-1251.
- Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar-powered closed physisorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2516-2538.
- Marcin Sowa & Karol Sztekler & Agata Mlonka-Mędrala & Łukasz Mika, 2023. "An Overview of Developments In Silica Gel Matrix Composite Sorbents for Adsorption Chillers with Desalination Function," Energies, MDPI, vol. 16(15), pages 1-34, August.
- Chauhan, P.R. & Kaushik, S.C. & Tyagi, S.K., 2022. "Current status and technological advancements in adsorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Jung-Gil Lee & Kyung Jin Bae & Oh Kyung Kwon, 2020. "Performance Investigation of a Two-Bed Type Adsorption Chiller with Various Adsorbents," Energies, MDPI, vol. 13(10), pages 1-16, May.
- Solmuş, İsmail & Yamalı, Cemil & Yıldırım, Cihan & Bilen, Kadir, 2015. "Transient behavior of a cylindrical adsorbent bed during the adsorption process," Applied Energy, Elsevier, vol. 142(C), pages 115-124.
More about this item
Keywords
Adsorption refrigeration; Silica gel; Water; Adsorption characteristics; Deterioration;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:734-741. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.