A dynamic multi-level model for adsorptive solar cooling
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2011.11.039
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Saha, Bidyut B. & Boelman, Elisa C. & Kashiwagi, Takao, 1995. "Computational analysis of an advanced adsorption-refrigeration cycle," Energy, Elsevier, vol. 20(10), pages 983-994.
- Luo, Huilong & Wang, Ruzhu & Dai, Yanjun, 2010. "The effects of operation parameter on the performance of a solar-powered adsorption chiller," Applied Energy, Elsevier, vol. 87(10), pages 3018-3022, October.
- Critoph, R.E., 1999. "Rapid cycling solar/biomass powered adsorption refrigeration system," Renewable Energy, Elsevier, vol. 16(1), pages 673-678.
- Khan, M.Z.I. & Saha, B.B. & Alam, K.C.A. & Akisawa, A. & Kashiwagi, T., 2007. "Study on solar/waste heat driven multi-bed adsorption chiller with mass recovery," Renewable Energy, Elsevier, vol. 32(3), pages 365-381.
- Saha, B.B & Akisawa, A & Kashiwagi, T, 2001. "Solar/waste heat driven two-stage adsorption chiller: the prototype," Renewable Energy, Elsevier, vol. 23(1), pages 93-101.
- Wu, J.Y. & Li, S., 2009. "Study on cyclic characteristics of silica gel–water adsorption cooling system driven by variable heat source," Energy, Elsevier, vol. 34(11), pages 1955-1962.
- Khan, M.Z.I. & Alam, K.C.A. & Saha, B.B. & Akisawa, A. & Kashiwagi, T., 2008. "Performance evaluation of multi-stage, multi-bed adsorption chiller employing re-heat scheme," Renewable Energy, Elsevier, vol. 33(1), pages 88-98.
- Saha, Bidyut B. & Koyama, Shigeru & Choon Ng, Kim & Hamamoto, Yoshinori & Akisawa, Atsushi & Kashiwagi, Takao, 2006. "Study on a dual-mode, multi-stage, multi-bed regenerative adsorption chiller," Renewable Energy, Elsevier, vol. 31(13), pages 2076-2090.
- Chen, C.J. & Wang, R.Z. & Xia, Z.Z. & Kiplagat, J.K. & Lu, Z.S., 2010. "Study on a compact silica gel-water adsorption chiller without vacuum valves: Design and experimental study," Applied Energy, Elsevier, vol. 87(8), pages 2673-2681, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Dechang & Zhang, Jipeng & Tian, Xiaoliang & Liu, Dawei & Sumathy, K., 2014. "Progress in silica gel–water adsorption refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 85-104.
- Olkis, C. & Santori, G. & Brandani, S., 2018. "An Adsorption Reverse Electrodialysis system for the generation of electricity from low-grade heat," Applied Energy, Elsevier, vol. 231(C), pages 222-234.
- Olkis, Christopher & AL-Hasni, Shihab & Brandani, Stefano & Vasta, Salvatore & Santori, Giulio, 2021. "Solar powered adsorption desalination for Northern and Southern Europe," Energy, Elsevier, vol. 232(C).
- Santori, Giulio & Charalambous, Charithea & Ferrari, Maria-Chiara & Brandani, Stefano, 2018. "Adsorption artificial tree for atmospheric carbon dioxide capture, purification and compression," Energy, Elsevier, vol. 162(C), pages 1158-1168.
- Zhang, Z.X. & Xu, H.J., 2023. "Thermodynamic modeling on multi-stage vacuum-pressure swing adsorption (VPSA) for direct air carbon capture with extreme dilute carbon dioxide," Energy, Elsevier, vol. 276(C).
- Mauro Luberti & Chiara Di Santis & Giulio Santori, 2020. "Ammonia/Ethanol Mixture for Adsorption Refrigeration," Energies, MDPI, vol. 13(4), pages 1-18, February.
- Jiang, L. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W., 2018. "Analysis on innovative resorption cycle for power and refrigeration cogeneration," Applied Energy, Elsevier, vol. 218(C), pages 10-21.
- Yunlong Ma & Suvash C. Saha & Wendy Miller & Lisa Guan, 2017. "Parametric Analysis of Design Parameter Effects on the Performance of a Solar Desiccant Evaporative Cooling System in Brisbane, Australia," Energies, MDPI, vol. 10(7), pages 1-22, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
- Wang, Dechang & Zhang, Jipeng & Tian, Xiaoliang & Liu, Dawei & Sumathy, K., 2014. "Progress in silica gel–water adsorption refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 85-104.
- Basdanis, Thanasis & Tsimpoukis, Alexandros & Valougeorgis, Dimitris, 2021. "Performance optimization of a solar adsorption chiller by dynamically adjusting the half-cycle time," Renewable Energy, Elsevier, vol. 164(C), pages 362-374.
- Xu, Jing & Huang, Meng & Liu, Zhiliang & Pan, Quanwen & Wang, Ruzhu & Ge, Tianshu, 2024. "Performance evaluation of a high-efficient hybrid adsorption refrigeration system for ultralow-grade heat utilization," Energy, Elsevier, vol. 288(C).
- Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
- Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar-powered closed physisorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2516-2538.
- Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
- Aep Saepul Uyun & Takahiko Miyazaki & Yuki Ueda & Atsushi Akisawa, 2009. "High Performance Cascading Adsorption Refrigeration Cycle with Internal Heat Recovery Driven by a Low Grade Heat Source Temperature," Energies, MDPI, vol. 2(4), pages 1-22, November.
- Chauhan, P.R. & Kaushik, S.C. & Tyagi, S.K., 2022. "Current status and technological advancements in adsorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Abul Fazal Mohammad Mizanur Rahman & Yuki Ueda & Atsushi Akisawa & Takahiko Miyazaki & Bidyut Baran Saha, 2013. "Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle," Energies, MDPI, vol. 6(3), pages 1-20, March.
- Wang, Dechang & Zhang, Jipeng & Yang, Qirong & Li, Na & Sumathy, K., 2014. "Study of adsorption characteristics in silica gel–water adsorption refrigeration," Applied Energy, Elsevier, vol. 113(C), pages 734-741.
- Li, Ang & Ismail, Azhar Bin & Thu, Kyaw & Ng, Kim Choon & Loh, Wai Soong, 2014. "Performance evaluation of a zeolite–water adsorption chiller with entropy analysis of thermodynamic insight," Applied Energy, Elsevier, vol. 130(C), pages 702-711.
- Zhao, Yongling & Hu, Eric & Blazewicz, Antoni, 2012. "Dynamic modelling of an activated carbon–methanol adsorption refrigeration tube with considerations of interfacial convection and transient pressure process," Applied Energy, Elsevier, vol. 95(C), pages 276-284.
- Anand, S. & Gupta, A. & Tyagi, S.K., 2015. "Solar cooling systems for climate change mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 143-161.
- Habib, Khairul & Choudhury, Biplab & Chatterjee, Pradip Kumar & Saha, Bidyut Baran, 2013. "Study on a solar heat driven dual-mode adsorption chiller," Energy, Elsevier, vol. 63(C), pages 133-141.
- Aep Saepul Uyun & Takahiko Miyazaki & Yuki Ueda & Atsushi Akisawa, 2009. "Experimental Investigation of a Three-Bed Adsorption Refrigeration Chiller Employing an Advanced Mass Recovery Cycle," Energies, MDPI, vol. 2(3), pages 1-14, July.
- Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
- Khan, M.Z.I. & Alam, K.C.A. & Saha, B.B. & Akisawa, A. & Kashiwagi, T., 2008. "Performance evaluation of multi-stage, multi-bed adsorption chiller employing re-heat scheme," Renewable Energy, Elsevier, vol. 33(1), pages 88-98.
- Hassan, H.Z. & Mohamad, A.A. & Bennacer, R., 2011. "Simulation of an adsorption solar cooling system," Energy, Elsevier, vol. 36(1), pages 530-537.
- Khan, M.Z.I. & Saha, B.B. & Alam, K.C.A. & Akisawa, A. & Kashiwagi, T., 2007. "Study on solar/waste heat driven multi-bed adsorption chiller with mass recovery," Renewable Energy, Elsevier, vol. 32(3), pages 365-381.
More about this item
Keywords
Solar cooling; Adsorption; Dynamic model; Silica gel; Refrigeration; Spectral analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:43:y:2012:i:c:p:301-312. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.