IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v174y2019icp1110-1120.html
   My bibliography  Save this article

Which dimensional model for the analysis of a coated tube adsorber for adsorption heat pumps?

Author

Listed:
  • Dias, João M.S.
  • Costa, Vítor A.F.

Abstract

This paper presents the analysis of a coated tube adsorber for adsorption heat pumps (AHP), starting from a well-established physical model and providing information on how many dimensions need to be considered for a given accuracy. A lumped-parameter model, one-dimensional (radial direction) and two-dimensional (radial and longitudinal directions) distributed-parameter models describing the adsorber’s dynamics are discussed. The optimal resolution, guaranteeing an accuracy of ≈1% with lower computational efforts is identified. Results obtained with the three dimensional models are compared and their suitability to predict the coefficient of performance (COP) and the specific heating power (SHP) of an AHP is investigated. Results show that the lumped-parameter model is able to predict the COP with minor deviations from the reference model; however, the SHP is overestimated. Furthermore, several sensibility analyses are performed aiming to assess the influence of important parameters, such as the adsorber tube length and heat transfer fluid’s (HTF) velocity. In addition, the influence of disregarding the adsorber metal tube mass is evaluated, resulting in deviations up to ≈4.5% for the COP and ≈7% for the SHP, which are considered significant. Results guide researchers to adopt a given dimensional model for the required accuracy.

Suggested Citation

  • Dias, João M.S. & Costa, Vítor A.F., 2019. "Which dimensional model for the analysis of a coated tube adsorber for adsorption heat pumps?," Energy, Elsevier, vol. 174(C), pages 1110-1120.
  • Handle: RePEc:eee:energy:v:174:y:2019:i:c:p:1110-1120
    DOI: 10.1016/j.energy.2019.03.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219304323
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.03.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rivero-Pacho, Angeles M. & Critoph, Robert E. & Metcalf, Steven J., 2017. "Modelling and development of a generator for a domestic gas-fired carbon-ammonia adsorption heat pump," Renewable Energy, Elsevier, vol. 110(C), pages 180-185.
    2. Pesaran, Alireza & Lee, Hoseong & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2016. "Review article: Numerical simulation of adsorption heat pumps," Energy, Elsevier, vol. 100(C), pages 310-320.
    3. Wittstadt, Ursula & Füldner, Gerrit & Laurenz, Eric & Warlo, Alexander & Große, André & Herrmann, Ralph & Schnabel, Lena & Mittelbach, Walter, 2017. "A novel adsorption module with fiber heat exchangers: Performance analysis based on driving temperature differences," Renewable Energy, Elsevier, vol. 110(C), pages 154-161.
    4. Sapienza, Alessio & Gullì, Giuseppe & Calabrese, Luigi & Palomba, Valeria & Frazzica, Andrea & Brancato, Vincenza & La Rosa, Davide & Vasta, Salvatore & Freni, Angelo & Bonaccorsi, Lucio & Cacciola, G, 2016. "An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers," Applied Energy, Elsevier, vol. 179(C), pages 929-938.
    5. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2016. "Modeling and parametric analysis of an adsorber unit for thermal energy storage," Energy, Elsevier, vol. 102(C), pages 83-94.
    6. Wang, Dechang & Zhang, Jipeng & Yang, Qirong & Li, Na & Sumathy, K., 2014. "Study of adsorption characteristics in silica gel–water adsorption refrigeration," Applied Energy, Elsevier, vol. 113(C), pages 734-741.
    7. Chakraborty, Anutosh & Saha, Bidyut Baran & Aristov, Yuri I., 2014. "Dynamic behaviors of adsorption chiller: Effects of the silica gel grain size and layers," Energy, Elsevier, vol. 78(C), pages 304-312.
    8. Wu, J.Y. & Li, S., 2009. "Study on cyclic characteristics of silica gel–water adsorption cooling system driven by variable heat source," Energy, Elsevier, vol. 34(11), pages 1955-1962.
    9. Ramji, Harunal Rejan & Leo, Sing Lim & Abdullah, Mohammad Omar, 2014. "Parametric study and simulation of a heat-driven adsorber for air conditioning system employing activated carbon–methanol working pair," Applied Energy, Elsevier, vol. 113(C), pages 324-333.
    10. Tokarev, Mikhail M. & Gordeeva, Larisa G. & Grekova, Alexandra D. & Aristov, Yuri I., 2018. "Adsorption cycle “heat from cold” for upgrading the ambient heat: The testing a lab-scale prototype with the composite sorbent CaClBr/silica," Applied Energy, Elsevier, vol. 211(C), pages 136-145.
    11. Sun, Baichuan & Chakraborty, Anutosh, 2015. "Thermodynamic frameworks of adsorption kinetics modeling: Dynamic water uptakes on silica gel for adsorption cooling applications," Energy, Elsevier, vol. 84(C), pages 296-302.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João M. S. Dias & Vítor A. F. Costa, 2021. "Modeling and Analysis of a Coated Tube Adsorber for Adsorption Heat Pumps," Energies, MDPI, vol. 14(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dias, João M.S. & Costa, Vítor A.F., 2018. "Adsorption heat pumps for heating applications: A review of current state, literature gaps and development challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 317-327.
    2. João M. S. Dias & Vítor A. F. Costa, 2021. "Modeling and Analysis of a Coated Tube Adsorber for Adsorption Heat Pumps," Energies, MDPI, vol. 14(21), pages 1-19, October.
    3. Teng, W.S. & Leong, K.C. & Chakraborty, A., 2016. "Revisiting adsorption cooling cycle from mathematical modelling to system development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 315-332.
    4. Mohammadzadeh Kowsari, Milad & Niazmand, Hamid & Tokarev, Mikhail Mikhailovich, 2018. "Bed configuration effects on the finned flat-tube adsorption heat exchanger performance: Numerical modeling and experimental validation," Applied Energy, Elsevier, vol. 213(C), pages 540-554.
    5. João M. S. Dias & Vítor A. F. Costa, 2022. "Adsorption Cooler Design, Dynamic Modeling, and Performance Analyses," Clean Technol., MDPI, vol. 4(4), pages 1-10, November.
    6. Solmuş, İsmail & Yamalı, Cemil & Yıldırım, Cihan & Bilen, Kadir, 2015. "Transient behavior of a cylindrical adsorbent bed during the adsorption process," Applied Energy, Elsevier, vol. 142(C), pages 115-124.
    7. Tomasz Bujok & Piotr Boruta & Łukasz Mika & Karol Sztekler, 2021. "Analysis of Designs of Heat Exchangers Used in Adsorption Chillers," Energies, MDPI, vol. 14(23), pages 1-28, December.
    8. Xavier Jobard & Pierryves Padey & Martin Guillaume & Alexis Duret & Daniel Pahud, 2020. "Development and Testing of Novel Applications for Adsorption Heat Pumps and Chillers," Energies, MDPI, vol. 13(3), pages 1-19, February.
    9. Andreas Velte & Lukas Joos & Gerrit Füldner, 2022. "Experimental Performance Analysis of Adsorption Modules with Sintered Aluminium Fiber Heat Exchangers and SAPO-34-Water Working Pair for Gas-Driven Heat Pumps: Influence of Evaporator Size, Temperatur," Energies, MDPI, vol. 15(8), pages 1-23, April.
    10. Lucio Bonaccorsi & Antonio Fotia & Angela Malara & Patrizia Frontera, 2020. "Advanced Adsorbent Materials for Waste Energy Recovery," Energies, MDPI, vol. 13(17), pages 1-15, August.
    11. Maciej Chorowski & Piotr Pyrka & Zbigniew Rogala & Piotr Czupryński, 2019. "Experimental Study of Performance Improvement of 3-Bed and 2-Evaporator Adsorption Chiller by Control Optimization," Energies, MDPI, vol. 12(20), pages 1-17, October.
    12. Rupa, Mahua Jahan & Pal, Animesh & Saha, Bidyut Baran, 2020. "Activated carbon-graphene nanoplatelets based green cooling system: Adsorption kinetics, heat of adsorption, and thermodynamic performance," Energy, Elsevier, vol. 193(C).
    13. Golparvar, Behzad & Niazmand, Hamid & Sharafian, Amir & Ahmadian Hosseini, Amirjavad, 2018. "Optimum fin spacing of finned tube adsorber bed heat exchangers in an exhaust gas-driven adsorption cooling system," Applied Energy, Elsevier, vol. 232(C), pages 504-516.
    14. Piotr Boruta & Tomasz Bujok & Łukasz Mika & Karol Sztekler, 2021. "Adsorbents, Working Pairs and Coated Beds for Natural Refrigerants in Adsorption Chillers—State of the Art," Energies, MDPI, vol. 14(15), pages 1-41, August.
    15. Larisa Gordeeva & Yuri Aristov, 2022. "Adsorbent Coatings for Adsorption Heat Transformation: From Synthesis to Application," Energies, MDPI, vol. 15(20), pages 1-25, October.
    16. Calabrese, L. & Bonaccorsi, L. & Bruzzaniti, P. & Proverbio, E. & Freni, A., 2019. "SAPO-34 based zeolite coatings for adsorption heat pumps," Energy, Elsevier, vol. 187(C).
    17. Wang, Yunfeng & Li, Ming & Ji, Xu & Yu, Qiongfen & Li, Guoliang & Ma, Xun, 2018. "Experimental study of the effect of enhanced mass transfer on the performance improvement of a solar-driven adsorption refrigeration system," Applied Energy, Elsevier, vol. 224(C), pages 417-425.
    18. Sapienza, Alessio & Palomba, Valeria & Gullì, Giuseppe & Frazzica, Andrea & Vasta, Salvatore, 2017. "A new management strategy based on the reallocation of ads-/desorption times: Experimental operation of a full-scale 3 beds adsorption chiller," Applied Energy, Elsevier, vol. 205(C), pages 1081-1090.
    19. Askalany, Ahmed A. & Ernst, Sebastian-Johannes & Hügenell, Philipp P.C. & Bart, Hans-Jörg & Henninger, Stefan K. & Alsaman, Ahmed S., 2017. "High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures," Energy, Elsevier, vol. 141(C), pages 782-791.
    20. Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:174:y:2019:i:c:p:1110-1120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.