IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp164-168.html
   My bibliography  Save this article

Hydrogen production in a light-driven photoelectrochemical cell

Author

Listed:
  • He, Yan-Rong
  • Yan, Fang-Fang
  • Yu, Han-Qing
  • Yuan, Shi-Jie
  • Tong, Zhong-Hua
  • Sheng, Guo-Ping

Abstract

Conversion of organic matter to hydrogen in a microbial electrolysis cell (MEC) is one of promising ways for hydrogen generation. However, the lack of efficient and cost-effective cathode catalysts and the need of additional electricity input make it less attractive. To resolve these problems, in this work a light-driven microbial photoelectrochemical cell (MPC) system, which consists of a TiO2 photocathode and a microbial anode, was constructed to utilize light energy and harvest electrons respectively. In this MPC system, continuous hydrogen production was achieved without external applied voltage under UV irradiation, and it had worked well continuously over 200h in a batch-fed mode under light illumination. An average hydrogen production rate of 3.5μmol/h was obtained. The results are useful for designing new hydrogen-harvesting systems.

Suggested Citation

  • He, Yan-Rong & Yan, Fang-Fang & Yu, Han-Qing & Yuan, Shi-Jie & Tong, Zhong-Hua & Sheng, Guo-Ping, 2014. "Hydrogen production in a light-driven photoelectrochemical cell," Applied Energy, Elsevier, vol. 113(C), pages 164-168.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:164-168
    DOI: 10.1016/j.apenergy.2013.07.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913005862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.07.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Yanna & Tang, Tianyu & Umagiliyage, Arosha Loku & Siddaramu, Thara & McCarroll, Matt & Choudhary, Ruplal, 2012. "Utilization of sorghum bagasse hydrolysates for producing microbial lipids," Applied Energy, Elsevier, vol. 91(1), pages 451-458.
    2. Wang, Xiaoyue & Li, Haibo & Liu, Yong & Zhao, Wenxia & Liang, Chaolun & Huang, Hong & Mo, Delin & Liu, Zhong & Yu, Xiao & Deng, Youjun & Shen, Hui, 2012. "Hydrothermal synthesis of well-aligned hierarchical TiO2 tubular macrochannel arrays with large surface area for high performance dye-sensitized solar cells," Applied Energy, Elsevier, vol. 99(C), pages 198-205.
    3. Belhadi, A. & Boumaza, S. & Trari, M., 2011. "Photoassisted hydrogen production under visible light over NiO/ZnO hetero-system," Applied Energy, Elsevier, vol. 88(12), pages 4490-4495.
    4. Ting, Chen-Ching & Chao, Wei-Shi, 2010. "Efficiency improvement of the DSSCs by building the carbon black as bridge in photoelectrode," Applied Energy, Elsevier, vol. 87(8), pages 2500-2505, August.
    5. Cheng, Xi-Yu & Liu, Chun-Zhao, 2012. "Fungal pretreatment enhances hydrogen production via thermophilic fermentation of cornstalk," Applied Energy, Elsevier, vol. 91(1), pages 1-6.
    6. Chou, Chuen-Shii & Guo, Ming-Geng & Liu, Kuan-Hung & Chen, Yi-Siang, 2012. "Preparation of TiO2 particles and their applications in the light scattering layer of a dye-sensitized solar cell," Applied Energy, Elsevier, vol. 92(C), pages 224-233.
    7. Wang, Yong-Peng & Liu, Xian-Wei & Li, Wen-Wei & Li, Feng & Wang, Yun-Kun & Sheng, Guo-Ping & Zeng, Raymond J. & Yu, Han-Qing, 2012. "A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment," Applied Energy, Elsevier, vol. 98(C), pages 230-235.
    8. Boumaza, S. & Boudjemaa, A. & Bouguelia, A. & Bouarab, R. & Trari, M., 2010. "Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3," Applied Energy, Elsevier, vol. 87(7), pages 2230-2236, July.
    9. Liao, Yu-Te & Huang, Chao-Wei & Liao, Chi-Hung & Wu, Jeffery C.-S. & Wu, Kevin C.-W., 2012. "Synthesis of mesoporous titania thin films (MTTFs) with two different structures as photocatalysts for generating hydrogen from water splitting," Applied Energy, Elsevier, vol. 100(C), pages 75-80.
    10. Premier, G.C. & Kim, J.R. & Massanet-Nicolau, J. & Kyazze, G. & Esteves, S.R.R. & Penumathsa, B.K.V. & Rodríguez, J. & Maddy, J. & Dinsdale, R.M. & Guwy, A.J., 2013. "Integration of biohydrogen, biomethane and bioelectrochemical systems," Renewable Energy, Elsevier, vol. 49(C), pages 188-192.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Chunfeng & Liu, Qingling & Ji, Na & Kansha, Yasuki & Tsutsumi, Atsushi, 2015. "Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration," Applied Energy, Elsevier, vol. 154(C), pages 392-401.
    2. Kwak, Byeong Sub & Chae, Jinho & Kang, Misook, 2014. "Design of a photochemical water electrolysis system based on a W-typed dye-sensitized serial solar module for high hydrogen production," Applied Energy, Elsevier, vol. 125(C), pages 189-196.
    3. Gabrielyan, Lilit & Sargsyan, Harutyun & Hakobyan, Lilit & Trchounian, Armen, 2014. "Regulation of hydrogen photoproduction in Rhodobacter sphaeroides batch culture by external oxidizers and reducers," Applied Energy, Elsevier, vol. 131(C), pages 20-25.
    4. Gao, Yibo & Mao, Yanpeng & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong & Chen, Guifang & Chen, Shouyan, 2020. "Efficient generation of hydrogen by two-step thermochemical cycles: Successive thermal reduction and water splitting reactions using equal-power microwave irradiation and a high entropy material," Applied Energy, Elsevier, vol. 279(C).
    5. Rarotra, Saptak & Shahid, Shaik & De, Mahuya & Mandal, Tapas Kumar & Bandyopadhyay, Dipankar, 2021. "Graphite/RGO coated paper μ-electrolyzers for production and separation of hydrogen and oxygen," Energy, Elsevier, vol. 228(C).
    6. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
    7. Fischer, Fabian, 2018. "Photoelectrode, photovoltaic and photosynthetic microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 16-27.
    8. Jiang, Yong & Liang, Peng & Zhang, Changyong & Bian, Yanhong & Sun, Xueliang & Zhang, Helan & Yang, Xufei & Zhao, Feng & Huang, Xia, 2016. "Periodic polarity reversal for stabilizing the pH in two-chamber microbial electrolysis cells," Applied Energy, Elsevier, vol. 165(C), pages 670-675.
    9. Liang, Dawei & Han, Guodong & Zhang, Yongjia & Rao, Siyuan & Lu, Shanfu & Wang, Haining & Xiang, Yan, 2016. "Efficient H2 production in a microbial photoelectrochemical cell with a composite Cu2O/NiOx photocathode under visible light," Applied Energy, Elsevier, vol. 168(C), pages 544-549.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hug, Hubert & Bader, Michael & Mair, Peter & Glatzel, Thilo, 2014. "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Applied Energy, Elsevier, vol. 115(C), pages 216-225.
    2. Lee, Hyo Mun & Yoon, Jong Ho, 2018. "Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up," Applied Energy, Elsevier, vol. 225(C), pages 1013-1021.
    3. Duan, Huiling & Xuan, Yimin, 2014. "Enhanced optical absorption of the plasmonic nanoshell suspension based on the solar photocatalytic hydrogen production system," Applied Energy, Elsevier, vol. 114(C), pages 22-29.
    4. Wu, Chun-Te & Kuo, Hsiu-Po & Tsai, Hung-An & Pan, Wen-Chueh, 2012. "Rapid dye-sensitized solar cell working electrode preparation using far infrared rapid thermal annealing," Applied Energy, Elsevier, vol. 100(C), pages 138-143.
    5. Liu, Shou-Heng & Syu, Han-Ren, 2012. "One-step fabrication of N-doped mesoporous TiO2 nanoparticles by self-assembly for photocatalytic water splitting under visible light," Applied Energy, Elsevier, vol. 100(C), pages 148-154.
    6. Wang, Zhen & Wang, Yiping & Vivar, Marta & Fuentes, Manuel & Zhu, Li & Qin, Lianwei, 2014. "Photovoltaic and photocatalytic performance study of SOLWAT system for the degradation of Methylene Blue, Acid Red 26 and 4-Chlorophenol," Applied Energy, Elsevier, vol. 120(C), pages 1-10.
    7. Kang, H.Y. & Wang, H. Paul, 2012. "Cu@C dispersed TiO2 for dye-sensitized solar cell photoanodes," Applied Energy, Elsevier, vol. 100(C), pages 144-147.
    8. Ishaque, Kashif & Salam, Zainal & Lauss, George, 2014. "The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions," Applied Energy, Elsevier, vol. 119(C), pages 228-236.
    9. Wang, Xiaoyue & Li, Haibo & Liu, Yong & Zhao, Wenxia & Liang, Chaolun & Huang, Hong & Mo, Delin & Liu, Zhong & Yu, Xiao & Deng, Youjun & Shen, Hui, 2012. "Hydrothermal synthesis of well-aligned hierarchical TiO2 tubular macrochannel arrays with large surface area for high performance dye-sensitized solar cells," Applied Energy, Elsevier, vol. 99(C), pages 198-205.
    10. Cheng, Ya-Hsin & Nguyen, Van-Huy & Chan, Hsiang-Yu & Wu, Jeffrey C.S. & Wang, Wei-Hon, 2015. "Photo-enhanced hydrogenation of CO2 to mimic photosynthesis by CO co-feed in a novel twin reactor," Applied Energy, Elsevier, vol. 147(C), pages 318-324.
    11. Cerrillo, Míriam & Viñas, Marc & Bonmatí, August, 2018. "Anaerobic digestion and electromethanogenic microbial electrolysis cell integrated system: Increased stability and recovery of ammonia and methane," Renewable Energy, Elsevier, vol. 120(C), pages 178-189.
    12. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.
    13. Karim, Ahasanul & Islam, M. Amirul & Mishra, Puranjan & Yousuf, Abu & Faizal, Che Ku Mohammad & Khan, Md. Maksudur Rahman, 2021. "Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Battista, Luigi & Mecozzi, Laura & Coppola, Sara & Vespini, Veronica & Grilli, Simonetta & Ferraro, Pietro, 2014. "Graphene and carbon black nano-composite polymer absorbers for a pyro-electric solar energy harvesting device based on LiNbO3 crystals," Applied Energy, Elsevier, vol. 136(C), pages 357-362.
    15. Delavari, Saeed & Amin, Nor Aishah Saidina, 2016. "Photocatalytic conversion of CO2 and CH4 over immobilized titania nanoparticles coated on mesh: Optimization and kinetic study," Applied Energy, Elsevier, vol. 162(C), pages 1171-1185.
    16. Cui, Yi & Liang, Yanna, 2014. "Direct transesterification of wet Cryptococcus curvatus cells to biodiesel through use of microwave irradiation," Applied Energy, Elsevier, vol. 119(C), pages 438-444.
    17. Prajapati, Kalp Bhusan & Singh, Rajesh, 2020. "Bio-electrochemically hydrogen and methane production from co-digestion of wastes," Energy, Elsevier, vol. 198(C).
    18. Babar, Falak & Mehmood, Umer & Asghar, Hafza & Mehdi, M. Hassan & Khan, Anwar Ul Haq & Khalid, Hamza & Huda, Noor ul & Fatima, Zaira, 2020. "Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    19. Jayabalan, Tamilmani & Manickam, Matheswaran & Naina Mohamed, Samsudeen, 2020. "NiCo2O4-graphene nanocomposites in sugar industry wastewater fed microbial electrolysis cell for enhanced biohydrogen production," Renewable Energy, Elsevier, vol. 154(C), pages 1144-1152.
    20. Laura Clarizia & Danilo Russo & Ilaria Di Somma & Roberto Andreozzi & Raffaele Marotta, 2017. "Hydrogen Generation through Solar Photocatalytic Processes: A Review of the Configuration and the Properties of Effective Metal-Based Semiconductor Nanomaterials," Energies, MDPI, vol. 10(10), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:164-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.