IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920312629.html
   My bibliography  Save this article

Efficient generation of hydrogen by two-step thermochemical cycles: Successive thermal reduction and water splitting reactions using equal-power microwave irradiation and a high entropy material

Author

Listed:
  • Gao, Yibo
  • Mao, Yanpeng
  • Song, Zhanlong
  • Zhao, Xiqiang
  • Sun, Jing
  • Wang, Wenlong
  • Chen, Guifang
  • Chen, Shouyan

Abstract

Hydrogen production through two-step thermochemical water splitting cycle based on metal oxide has emerged as a promising strategy to store dilute and intermittent solar energy. However, a typical reaction time of the two-step thermochemical water splitting cycle is lengthy, with at least 0.5 h for thermal reduction step and 1 h for water splitting step, and the energy required in the thermal reduction process for hydrogen regeneration is higher than the generated hydrogen energy. In this work, to overcome the problem of an energy efficiency imbalance, we investigated the possibility of the rapid and successive reactions of thermal reduction and water splitting, using short-term irradiation from a low-energy microwave. To this end, a high entropy material, as a poly-metal oxide used to generate hydrogen, was produced by simultaneously introducing four cations onto a SiC foam – (FeMgCoNi)O1.2@SiC. It was found that the oxygen vacancy of the (FeMgCoNi)O1.2@SiC could be significantly increased by short-term microwave irradiation, and hence the thermal reduction process took only 4 min, which is much less than normal. High H2 generation rates were achieved by re-oxidation of the Fe (II) to Fe (III) of the (FeMgCoNi)O1.2@SiC. In addition, the microwave plasma generated by microwave irradiation induced (FeMgCoNi)O1.2@SiC discharge could enhance the water splitting process. The maximum hydrogen yield was 122 mL/g at 700 W, due to the coupling effect of the thermochemical cycle and microwave plasma. In this way, the power consumption of microwave process is only 3% of that of conventional high-temperature heat treatment during thermal reduction process.

Suggested Citation

  • Gao, Yibo & Mao, Yanpeng & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong & Chen, Guifang & Chen, Shouyan, 2020. "Efficient generation of hydrogen by two-step thermochemical cycles: Successive thermal reduction and water splitting reactions using equal-power microwave irradiation and a high entropy material," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312629
    DOI: 10.1016/j.apenergy.2020.115777
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920312629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
    2. Hoskins, Amanda L. & Millican, Samantha L. & Czernik, Caitlin E. & Alshankiti, Ibraheam & Netter, Judy C. & Wendelin, Timothy J. & Musgrave, Charles B. & Weimer, Alan W., 2019. "Continuous on-sun solar thermochemical hydrogen production via an isothermal redox cycle," Applied Energy, Elsevier, vol. 249(C), pages 368-376.
    3. He, Yan-Rong & Yan, Fang-Fang & Yu, Han-Qing & Yuan, Shi-Jie & Tong, Zhong-Hua & Sheng, Guo-Ping, 2014. "Hydrogen production in a light-driven photoelectrochemical cell," Applied Energy, Elsevier, vol. 113(C), pages 164-168.
    4. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    5. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    6. Christina M. Rost & Edward Sachet & Trent Borman & Ali Moballegh & Elizabeth C. Dickey & Dong Hou & Jacob L. Jones & Stefano Curtarolo & Jon-Paul Maria, 2015. "Entropy-stabilized oxides," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    7. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    8. Kong, Hui & Hao, Yong & Jin, Hongguang, 2018. "Isothermal versus two-temperature solar thermochemical fuel synthesis: A comparative study," Applied Energy, Elsevier, vol. 228(C), pages 301-308.
    9. Davenport, Timothy C. & Yang, Chih-Kai & Kucharczyk, Christopher J. & Ignatowich, Michael J. & Haile, Sossina M., 2016. "Maximizing fuel production rates in isothermal solar thermochemical fuel production," Applied Energy, Elsevier, vol. 183(C), pages 1098-1111.
    10. Koepf, E. & Villasmil, W. & Meier, A., 2016. "Pilot-scale solar reactor operation and characterization for fuel production via the Zn/ZnO thermochemical cycle," Applied Energy, Elsevier, vol. 165(C), pages 1004-1023.
    11. Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
    12. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2016. "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 850-866.
    13. Christopher L. Muhich & Brian D. Ehrhart & Ibraheam Al-Shankiti & Barbara J. Ward & Charles B. Musgrave & Alan W. Weimer, 2016. "A review and perspective of efficient hydrogen generation via solar thermal water splitting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 261-287, May.
    14. Chaubey, Rashmi & Sahu, Satanand & James, Olusola O. & Maity, Sudip, 2013. "A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 443-462.
    15. Rahul Bhosale & Anand Kumar & Fares AlMomani & Ujjal Ghosh & Mohammad Saad Anis & Konstantinos Kakosimos & Rajesh Shende & Marc A. Rosen, 2016. "Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle," Energies, MDPI, vol. 9(5), pages 1-15, April.
    16. Lucía Arribas & José González-Aguilar & Manuel Romero, 2018. "Solar-Driven Thermochemical Water-Splitting by Cerium Oxide: Determination of Operational Conditions in a Directly Irradiated Fixed Bed Reactor," Energies, MDPI, vol. 11(9), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    2. Daphne Oudejans & Michele Offidani & Achilleas Constantinou & Stefania Albonetti & Nikolaos Dimitratos & Atul Bansode, 2022. "A Comprehensive Review on Two-Step Thermochemical Water Splitting for Hydrogen Production in a Redox Cycle," Energies, MDPI, vol. 15(9), pages 1-24, April.
    3. Jiang, Boshu & Guene Lougou, Bachirou & Zhang, Hao & Geng, Boxi & Wu, Lianxuan & Shuai, Yong, 2022. "Preparation and solar thermochemical properties analysis of NiFe2O4@SiC/ @Si3N4 for high-performance CO2-splitting," Applied Energy, Elsevier, vol. 328(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    2. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    3. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.
    4. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    5. Koepf, E. & Alxneit, I. & Wieckert, C. & Meier, A., 2017. "A review of high temperature solar driven reactor technology: 25years of experience in research and development at the Paul Scherrer Institute," Applied Energy, Elsevier, vol. 188(C), pages 620-651.
    6. Ping, Zhang & Laijun, Wang & Songzhe, Chen & Jingming, Xu, 2018. "Progress of nuclear hydrogen production through the iodine–sulfur process in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1802-1812.
    7. Daphne Oudejans & Michele Offidani & Achilleas Constantinou & Stefania Albonetti & Nikolaos Dimitratos & Atul Bansode, 2022. "A Comprehensive Review on Two-Step Thermochemical Water Splitting for Hydrogen Production in a Redox Cycle," Energies, MDPI, vol. 15(9), pages 1-24, April.
    8. Lidor, A. & Fend, T. & Roeb, M. & Sattler, C., 2021. "High performance solar receiver–reactor for hydrogen generation," Renewable Energy, Elsevier, vol. 179(C), pages 1217-1232.
    9. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    10. Pulla Rose Havilah & Amit Kumar Sharma & Gopalakrishnan Govindasamy & Leonidas Matsakas & Alok Patel, 2022. "Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas," Energies, MDPI, vol. 15(11), pages 1-19, May.
    11. Marino, C. & Nucara, A. & Panzera, M.F. & Pietrafesa, M. & Varano, V., 2019. "Energetic and economic analysis of a stand alone photovoltaic system with hydrogen storage," Renewable Energy, Elsevier, vol. 142(C), pages 316-329.
    12. Kong, Hui & Hao, Yong & Jin, Hongguang, 2018. "Isothermal versus two-temperature solar thermochemical fuel synthesis: A comparative study," Applied Energy, Elsevier, vol. 228(C), pages 301-308.
    13. Wei, T.Y. & Lim, K.L. & Tseng, Y.S. & Chan, S.L.I., 2017. "A review on the characterization of hydrogen in hydrogen storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1122-1133.
    14. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    15. Qolipour, Mojtaba & Mostafaeipour, Ali & Tousi, Omid Mohseni, 2017. "Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 113-123.
    16. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    17. María Pilar González-Vázquez & Roberto García & Covadonga Pevida & Fernando Rubiera, 2017. "Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass," Energies, MDPI, vol. 10(3), pages 1-16, March.
    18. Farboud Khatami & Erfan Goharian, 2022. "Beyond Profitable Shifts to Green Energies, towards Energy Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-28, April.
    19. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    20. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.