IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v92y2012icp224-233.html
   My bibliography  Save this article

Preparation of TiO2 particles and their applications in the light scattering layer of a dye-sensitized solar cell

Author

Listed:
  • Chou, Chuen-Shii
  • Guo, Ming-Geng
  • Liu, Kuan-Hung
  • Chen, Yi-Siang

Abstract

This study investigates the applicability of a hybrid TiO2 electrode (or a working electrode with a light scattering layer) in a dye-sensitized solar cell (DSSC). Microcrystalline TiO2 particles, synthesized by the simple sol–gel method using TiCl4 ethanol solution as a precursor, were used to prepare a light scattering layer of the working electrode (or a hybrid TiO2 electrode), and the properties of these microcrystalline TiO2 particles were measured. This electrode was then immersed in a solution of N-719 (Ruthenium) dye at a temperature of 70°C for 6h. Finally, the DSSC was assembled, and the short-circuit photocurrent, the open-circuit photovoltage, and the power conversion efficiency of DSSC were measured using an I–V measurement system. The effect of the average size of TiO2 particles synthesized by the sol–gel method on the power conversion efficiency of a DSSC was also examined. Most importantly, this study shows that the power conversion efficiency of the DSSC with a hybrid TiO2 electrode (7.02%), which consisted of 50% TiO2 particles (P-25) and 50% TiO2 particles with an average size of 268.7nm, substantially exceeds that of the conventional DSSC with a TiO2 (P-25) electrode (5.16%) due to the effect of the light scattering in the DSSC.

Suggested Citation

  • Chou, Chuen-Shii & Guo, Ming-Geng & Liu, Kuan-Hung & Chen, Yi-Siang, 2012. "Preparation of TiO2 particles and their applications in the light scattering layer of a dye-sensitized solar cell," Applied Energy, Elsevier, vol. 92(C), pages 224-233.
  • Handle: RePEc:eee:appene:v:92:y:2012:i:c:p:224-233
    DOI: 10.1016/j.apenergy.2011.10.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911006921
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.10.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ting, Chen-Ching & Chao, Wei-Shi, 2010. "Efficiency improvement of the DSSCs by building the carbon black as bridge in photoelectrode," Applied Energy, Elsevier, vol. 87(8), pages 2500-2505, August.
    2. Li, Ming & Liu, Yong & Wang, Hai & Shen, Hui, 2011. "Synthesis of TiO2 submicro-rings and their application in dye-sensitized solar cell," Applied Energy, Elsevier, vol. 88(3), pages 825-830, March.
    3. Zhang, Wei & Zhu, Rui & Liu, Bin & Ramakrishna, Seeram, 2012. "High-performance hybrid solar cells employing metal-free organic dye modified TiO2 as photoelectrode," Applied Energy, Elsevier, vol. 90(1), pages 305-308.
    4. Liu, Yong & Wang, Hai & Shen, Hui & Chen, Wei, 2010. "The 3-dimensional dye-sensitized solar cell and module based on all titanium substrates," Applied Energy, Elsevier, vol. 87(2), pages 436-441, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bin & Leung, Michael K.H. & Lu, Xiao-Ying & Chen, Si-Ying, 2013. "Synthesis and photocatalytic activity of boron and fluorine codoped TiO2 nanosheets with reactive facets," Applied Energy, Elsevier, vol. 112(C), pages 1190-1197.
    2. Kang, H.Y. & Wang, H. Paul, 2012. "Cu@C dispersed TiO2 for dye-sensitized solar cell photoanodes," Applied Energy, Elsevier, vol. 100(C), pages 144-147.
    3. Wu, Chun-Te & Kuo, Hsiu-Po & Tsai, Hung-An & Pan, Wen-Chueh, 2012. "Rapid dye-sensitized solar cell working electrode preparation using far infrared rapid thermal annealing," Applied Energy, Elsevier, vol. 100(C), pages 138-143.
    4. Chou, Chuen-Shii & Huang, Yan-Hao & Wu, Ping & Kuo, Yi-Ting, 2014. "Chemical-photo-electricity diagrams by Ohm’s law – A case study of Ni-doped TiO2 solutions in dye-sensitized solar cells," Applied Energy, Elsevier, vol. 118(C), pages 12-21.
    5. Liu, Liqun & Meng, Xiaoli & Liu, Chunxia, 2016. "A review of maximum power point tracking methods of PV power system at uniform and partial shading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1500-1507.
    6. Wang, Zhen & Wang, Yiping & Vivar, Marta & Fuentes, Manuel & Zhu, Li & Qin, Lianwei, 2014. "Photovoltaic and photocatalytic performance study of SOLWAT system for the degradation of Methylene Blue, Acid Red 26 and 4-Chlorophenol," Applied Energy, Elsevier, vol. 120(C), pages 1-10.
    7. He, Yan-Rong & Yan, Fang-Fang & Yu, Han-Qing & Yuan, Shi-Jie & Tong, Zhong-Hua & Sheng, Guo-Ping, 2014. "Hydrogen production in a light-driven photoelectrochemical cell," Applied Energy, Elsevier, vol. 113(C), pages 164-168.
    8. Ishaque, Kashif & Salam, Zainal & Lauss, George, 2014. "The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions," Applied Energy, Elsevier, vol. 119(C), pages 228-236.
    9. Ishaque, Kashif & Salam, Zainal & Shamsudin, Amir & Amjad, Muhammad, 2012. "A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 99(C), pages 414-422.
    10. Liu, Shou-Heng & Syu, Han-Ren, 2012. "One-step fabrication of N-doped mesoporous TiO2 nanoparticles by self-assembly for photocatalytic water splitting under visible light," Applied Energy, Elsevier, vol. 100(C), pages 148-154.
    11. Wang, Xiaoyue & Li, Haibo & Liu, Yong & Zhao, Wenxia & Liang, Chaolun & Huang, Hong & Mo, Delin & Liu, Zhong & Yu, Xiao & Deng, Youjun & Shen, Hui, 2012. "Hydrothermal synthesis of well-aligned hierarchical TiO2 tubular macrochannel arrays with large surface area for high performance dye-sensitized solar cells," Applied Energy, Elsevier, vol. 99(C), pages 198-205.
    12. Hug, Hubert & Bader, Michael & Mair, Peter & Glatzel, Thilo, 2014. "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Applied Energy, Elsevier, vol. 115(C), pages 216-225.
    13. Lee, Hyo Mun & Yoon, Jong Ho, 2018. "Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up," Applied Energy, Elsevier, vol. 225(C), pages 1013-1021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hug, Hubert & Bader, Michael & Mair, Peter & Glatzel, Thilo, 2014. "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Applied Energy, Elsevier, vol. 115(C), pages 216-225.
    2. Wu, Chun-Te & Kuo, Hsiu-Po & Tsai, Hung-An & Pan, Wen-Chueh, 2012. "Rapid dye-sensitized solar cell working electrode preparation using far infrared rapid thermal annealing," Applied Energy, Elsevier, vol. 100(C), pages 138-143.
    3. Kang, H.Y. & Wang, H. Paul, 2012. "Cu@C dispersed TiO2 for dye-sensitized solar cell photoanodes," Applied Energy, Elsevier, vol. 100(C), pages 144-147.
    4. Wang, Xiaoyue & Li, Haibo & Liu, Yong & Zhao, Wenxia & Liang, Chaolun & Huang, Hong & Mo, Delin & Liu, Zhong & Yu, Xiao & Deng, Youjun & Shen, Hui, 2012. "Hydrothermal synthesis of well-aligned hierarchical TiO2 tubular macrochannel arrays with large surface area for high performance dye-sensitized solar cells," Applied Energy, Elsevier, vol. 99(C), pages 198-205.
    5. Su, Shanhe & Liu, Tie & Wang, Yuan & Chen, Xiaohang & Wang, Jintong & Chen, Jincan, 2014. "Performance optimization analyses and parametric design criteria of a dye-sensitized solar cell thermoelectric hybrid device," Applied Energy, Elsevier, vol. 120(C), pages 16-22.
    6. Ishaque, Kashif & Salam, Zainal & Mekhilef, Saad & Shamsudin, Amir, 2012. "Parameter extraction of solar photovoltaic modules using penalty-based differential evolution," Applied Energy, Elsevier, vol. 99(C), pages 297-308.
    7. Liu, Liqun & Meng, Xiaoli & Liu, Chunxia, 2016. "A review of maximum power point tracking methods of PV power system at uniform and partial shading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1500-1507.
    8. Ishaque, Kashif & Salam, Zainal & Shamsudin, Amir & Amjad, Muhammad, 2012. "A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 99(C), pages 414-422.
    9. Lee, Hyo Mun & Yoon, Jong Ho, 2018. "Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up," Applied Energy, Elsevier, vol. 225(C), pages 1013-1021.
    10. Luan, Weiling & Zhang, Chengxi & Luo, Lingli & Yuan, Binxia & Jin, Lin & Kim, Yong-Sang, 2017. "Enhancement of the photoelectric performance in inverted bulk heterojunction solid solar cell with inorganic nanocrystals," Applied Energy, Elsevier, vol. 185(P2), pages 2217-2223.
    11. Battista, Luigi & Mecozzi, Laura & Coppola, Sara & Vespini, Veronica & Grilli, Simonetta & Ferraro, Pietro, 2014. "Graphene and carbon black nano-composite polymer absorbers for a pyro-electric solar energy harvesting device based on LiNbO3 crystals," Applied Energy, Elsevier, vol. 136(C), pages 357-362.
    12. Hussien, Ahmed A. & Abdullah, Mohd Z. & Al-Nimr, Moh’d A., 2016. "Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications," Applied Energy, Elsevier, vol. 164(C), pages 733-755.
    13. Babar, Falak & Mehmood, Umer & Asghar, Hafza & Mehdi, M. Hassan & Khan, Anwar Ul Haq & Khalid, Hamza & Huda, Noor ul & Fatima, Zaira, 2020. "Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    14. Zhao, Qin & Lai, Cong & Zhang, Houcheng & Hu, Ziyang, 2023. "A broad-spectrum solar energy power system by hybridizing stirling-like thermocapacitive cycles to dye-sensitized solar cells," Renewable Energy, Elsevier, vol. 205(C), pages 94-104.
    15. Wang, Bin & Leung, Michael K.H. & Lu, Xiao-Ying & Chen, Si-Ying, 2013. "Synthesis and photocatalytic activity of boron and fluorine codoped TiO2 nanosheets with reactive facets," Applied Energy, Elsevier, vol. 112(C), pages 1190-1197.
    16. Chen, Ze & Zhang, Xiao-dan & Fang, Jia & Liang, Jun-hui & Liang, Xue-jiao & Sun, Jian & Zhang, De-kun & Wang, Ning & Zhao, Hui-xu & Chen, Xin-liang & Huang, Qian & Wei, Chang-chun & Zhao, Ying, 2014. "Enhancement in electrical performance of thin-film silicon solar cells based on a micro- and nano-textured zinc oxide electrodes," Applied Energy, Elsevier, vol. 135(C), pages 158-164.
    17. Nabipour, M. & Razaz, M. & Seifossadat, S.GH & Mortazavi, S.S., 2017. "A new MPPT scheme based on a novel fuzzy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1147-1169.
    18. Sasikumar, Ragu & Thirumalaisamy, Suryaprabha & Kim, Byungki & Hwang, Byungil, 2024. "Dye-sensitized solar cells: Insights and research divergence towards alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    19. He, Yan-Rong & Yan, Fang-Fang & Yu, Han-Qing & Yuan, Shi-Jie & Tong, Zhong-Hua & Sheng, Guo-Ping, 2014. "Hydrogen production in a light-driven photoelectrochemical cell," Applied Energy, Elsevier, vol. 113(C), pages 164-168.
    20. Goe, Michele & Gaustad, Gabrielle, 2014. "Identifying critical materials for photovoltaics in the US: A multi-metric approach," Applied Energy, Elsevier, vol. 123(C), pages 387-396.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:92:y:2012:i:c:p:224-233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.