IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v119y2014icp438-444.html
   My bibliography  Save this article

Direct transesterification of wet Cryptococcus curvatus cells to biodiesel through use of microwave irradiation

Author

Listed:
  • Cui, Yi
  • Liang, Yanna

Abstract

Cryptococcus curvatus is a highly promising oleaginous yeast strain that can accumulate intracellular lipids when grown on renewable carbon sources. In order to convert yeast lipids to biodiesel in a simple but cost-effective way, we aim to react whole yeast cells with methanol to produce biodiesel eliminating the step of drying and lipid extraction while adopting microwave energy for heating and disrupting cell walls. Through use of a screening test followed by response surface methodology, optimal parameters leading to the highest yield of crude biodiesel and FAMEs were identified. Under optimal conditions of reaction time (2min), methanol/biomass ratio (50/1, v/m), stirring speed (966rpm), KOH concentration (5%), and water content (80%), the yield of crude biodiesel (% of total lipids) was 56.1% after the first round reaction. A second round reaction using the residual yeast cells increased the total yield to 92%. Among the crude biodiesel, 63.88% was FAMEs as revealed by GC analysis. Results from this study indicated that it is feasible to produce biodiesel from wet microbial biomass directly without the steps of drying and lipid extraction. With the assistance of microwave, this process can be accomplished in minutes with good process efficiency.

Suggested Citation

  • Cui, Yi & Liang, Yanna, 2014. "Direct transesterification of wet Cryptococcus curvatus cells to biodiesel through use of microwave irradiation," Applied Energy, Elsevier, vol. 119(C), pages 438-444.
  • Handle: RePEc:eee:appene:v:119:y:2014:i:c:p:438-444
    DOI: 10.1016/j.apenergy.2014.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191400035X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Yanna & Tang, Tianyu & Umagiliyage, Arosha Loku & Siddaramu, Thara & McCarroll, Matt & Choudhary, Ruplal, 2012. "Utilization of sorghum bagasse hydrolysates for producing microbial lipids," Applied Energy, Elsevier, vol. 91(1), pages 451-458.
    2. Liang, Yanna & Tang, Tianyu & Siddaramu, Thara & Choudhary, Ruplal & Umagiliyage, Arosha Loku, 2012. "Lipid production from sweet sorghum bagasse through yeast fermentation," Renewable Energy, Elsevier, vol. 40(1), pages 130-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sitepu, Eko K. & Heimann, Kirsten & Raston, Colin L. & Zhang, Wei, 2020. "Critical evaluation of process parameters for direct biodiesel production from diverse feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Bi, Zheting & Zhang, Ji & Zhu, Zeying & Liang, Yanna & Wiltowski, Tomasz, 2018. "Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction," Applied Energy, Elsevier, vol. 209(C), pages 435-444.
    3. Nayak, Sheetal N. & Bhasin, Chandra Prakash & Nayak, Milap G., 2019. "A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems," Renewable Energy, Elsevier, vol. 143(C), pages 1366-1387.
    4. Martinez-Guerra, Edith & Gude, Veera Gnaneswar & Mondala, Andro & Holmes, William & Hernandez, Rafael, 2014. "Microwave and ultrasound enhanced extractive-transesterification of algal lipids," Applied Energy, Elsevier, vol. 129(C), pages 354-363.
    5. Tran, Dang-Thuan & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes," Applied Energy, Elsevier, vol. 185(P1), pages 376-409.
    6. Ling, Jiayin & Nip, Saiwa & de Toledo, Renata Alves & Tian, Yuan & Shim, Hojae, 2016. "Evaluation of specific lipid production and nutrients removal from wastewater by Rhodosporidium toruloides and biodiesel production from wet biomass via microwave irradiation," Energy, Elsevier, vol. 108(C), pages 185-194.
    7. Chukwuma Onumaegbu & Abed Alaswad & Cristina Rodriguez & Abdul G. Olabi, 2018. "Optimization of Pre-Treatment Process Parameters to Generate Biodiesel from Microalga," Energies, MDPI, vol. 11(4), pages 1-16, March.
    8. Fazril Ideris & Mohd Faiz Muaz Ahmad Zamri & Abd Halim Shamsuddin & Saifuddin Nomanbhay & Fitranto Kusumo & Islam Md Rizwanul Fattah & Teuku Meurah Indra Mahlia, 2022. "Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production," Energies, MDPI, vol. 15(19), pages 1-32, September.
    9. Metawea, Rodaina & Zewail, Taghreed & El-Ashtoukhy, El-Sayed & El Gheriany, Iman & Hamad, Hesham, 2018. "Process intensification of the transesterification of palm oil to biodiesel in a batch agitated vessel provided with mesh screen extended baffles," Energy, Elsevier, vol. 158(C), pages 111-120.
    10. Carvalho, Ana Karine F. & Bento, Heitor B.S. & Izário Filho, Hélcio J. & de Castro, Heizir F., 2018. "Approaches to convert Mucor circinelloides lipid into biodiesel by enzymatic synthesis assisted by microwave irradiations," Renewable Energy, Elsevier, vol. 125(C), pages 747-754.
    11. Stamenković, Olivera S. & Siliveru, Kaliramesh & Veljković, Vlada B. & Banković-Ilić, Ivana B. & Tasić, Marija B. & Ciampitti, Ignacio A. & Đalović, Ivica G. & Mitrović, Petar M. & Sikora, Vladimir Š., 2020. "Production of biofuels from sorghum," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    12. Hoang Chinh Nguyen & Fu-Ming Wang & Kim Khue Dinh & Thanh Truc Pham & Horng-Yi Juan & Nguyen Phuong Nguyen & Hwai Chyuan Ong & Chia-Hung Su, 2020. "Microwave-Assisted Noncatalytic Esterification of Fatty Acid for Biodiesel Production: A Kinetic Study," Energies, MDPI, vol. 13(9), pages 1-15, May.
    13. Onumaegbu, C. & Alaswad, A. & Rodriguez, C. & Olabi, A., 2019. "Modelling and optimization of wet microalgae Scenedesmus quadricauda lipid extraction using microwave pre-treatment method and response surface methodology," Renewable Energy, Elsevier, vol. 132(C), pages 1323-1331.
    14. Savienne M. F. E. Zorn & Ana Paula T. da Silva & Eduardo H. Bredda & Heitor B. S. Bento & Guilherme A. Pedro & Ana Karine F. Carvalho & Messias Borges Silva & Patrícia C. M. Da Rós, 2022. "In Situ Transesterification of Microbial Biomass for Biolubricant Production Catalyzed by Heteropolyacid Supported on Niobium," Energies, MDPI, vol. 15(4), pages 1-12, February.
    15. Katre, Gouri & Raskar, Shubham & Zinjarde, Smita & Ravi Kumar, V. & Kulkarni, B.D. & RaviKumar, Ameeta, 2018. "Optimization of the in situ transesterification step for biodiesel production using biomass of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil," Energy, Elsevier, vol. 142(C), pages 944-952.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deeba, Farha & Kumar, Bijender & Arora, Neha & Singh, Sauraj & Kumar, Anuj & Han, Sung Soo & Negi, Yuvraj S., 2020. "Novel bio-based solid acid catalyst derived from waste yeast residue for biodiesel production," Renewable Energy, Elsevier, vol. 159(C), pages 127-139.
    2. Dong, Tao & Knoshaug, Eric P. & Pienkos, Philip T. & Laurens, Lieve M.L., 2016. "Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review," Applied Energy, Elsevier, vol. 177(C), pages 879-895.
    3. Masri, Mahmoud A. & Jurkowski, Wojciech & Shaigani, Pariya & Haack, Martina & Mehlmer, Norbert & Brück, Thomas, 2018. "A waste-free, microbial oil centered cyclic bio-refinery approach based on flexible macroalgae biomass," Applied Energy, Elsevier, vol. 224(C), pages 1-12.
    4. Alejandra Sánchez-Solís & Odette Lobato-Calleros & Rubén Moreno-Terrazas & Patricia Lappe-Oliveras & Elier Neri-Torres, 2024. "Biodiesel Production Processes with Yeast: A Sustainable Approach," Energies, MDPI, vol. 17(2), pages 1-37, January.
    5. He, Yan-Rong & Yan, Fang-Fang & Yu, Han-Qing & Yuan, Shi-Jie & Tong, Zhong-Hua & Sheng, Guo-Ping, 2014. "Hydrogen production in a light-driven photoelectrochemical cell," Applied Energy, Elsevier, vol. 113(C), pages 164-168.
    6. Antonopoulou, Io & Spanopoulos, Athanasios & Matsakas, Leonidas, 2020. "Single cell oil and ethanol production by the oleaginous yeast Trichosporon fermentans utilizing dried sweet sorghum stalks," Renewable Energy, Elsevier, vol. 146(C), pages 1609-1617.
    7. Patel, Alok & Arora, Neha & Sartaj, Km & Pruthi, Vikas & Pruthi, Parul A., 2016. "Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 836-855.
    8. Onumaegbu, C. & Alaswad, A. & Rodriguez, C. & Olabi, A., 2019. "Modelling and optimization of wet microalgae Scenedesmus quadricauda lipid extraction using microwave pre-treatment method and response surface methodology," Renewable Energy, Elsevier, vol. 132(C), pages 1323-1331.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:119:y:2014:i:c:p:438-444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.