IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v112y2013icp1190-1197.html
   My bibliography  Save this article

Synthesis and photocatalytic activity of boron and fluorine codoped TiO2 nanosheets with reactive facets

Author

Listed:
  • Wang, Bin
  • Leung, Michael K.H.
  • Lu, Xiao-Ying
  • Chen, Si-Ying

Abstract

In this study, TiO2 nanosheets codoped with boron and fluorine were prepared by a one-pot hydrothermal method and investigated for photocatalytic dye degradation and disinfection. The as-prepared TiO2 materials were characterized by field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectroscopy (DRS). The results indicate that the as-prepared TiO2 are of nanosheet morphology with anatase phase. The best degradation performance was obtained for square TiO2 nanosheet sized 10nm long on the side and 2.5nm thick. Methylene blue was degraded by 95% in concentration under visible light irradiation for 5h. In addition, TiO2 nanosheets showed good stability after eight cycles of photocatalytic testing. The disinfection study implied that B,F-codoped TiO2 nanosheets could effectively inactivate bacteria within 15min under visible light. The performance of B,F-codoped TiO2 nanosheets is clearly much better than that of F-doped TiO2 nanosheets and commercial Degussa P25.

Suggested Citation

  • Wang, Bin & Leung, Michael K.H. & Lu, Xiao-Ying & Chen, Si-Ying, 2013. "Synthesis and photocatalytic activity of boron and fluorine codoped TiO2 nanosheets with reactive facets," Applied Energy, Elsevier, vol. 112(C), pages 1190-1197.
  • Handle: RePEc:eee:appene:v:112:y:2013:i:c:p:1190-1197
    DOI: 10.1016/j.apenergy.2013.03.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913002808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.03.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hua Gui Yang & Cheng Hua Sun & Shi Zhang Qiao & Jin Zou & Gang Liu & Sean Campbell Smith & Hui Ming Cheng & Gao Qing Lu, 2008. "Anatase TiO2 single crystals with a large percentage of reactive facets," Nature, Nature, vol. 453(7195), pages 638-641, May.
    2. Ni, Meng & Leung, Michael K.H. & Leung, Dennis Y.C. & Sumathy, K., 2007. "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 401-425, April.
    3. Chou, Chuen-Shii & Guo, Ming-Geng & Liu, Kuan-Hung & Chen, Yi-Siang, 2012. "Preparation of TiO2 particles and their applications in the light scattering layer of a dye-sensitized solar cell," Applied Energy, Elsevier, vol. 92(C), pages 224-233.
    4. Li, Ming & Liu, Yong & Wang, Hai & Shen, Hui, 2011. "Synthesis of TiO2 submicro-rings and their application in dye-sensitized solar cell," Applied Energy, Elsevier, vol. 88(3), pages 825-830, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bin & Wang, Shifeng & Tang, Yuanyuan & Tsang, Chi-Wing & Dai, Jinchuan & Leung, Michael K.H. & Lu, Xiao-Ying, 2019. "Micro/nanostructured MnCo2O4.5 anodes with high reversible capacity and excellent rate capability for next generation lithium-ion batteries," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Pan, Hui, 2016. "Principles on design and fabrication of nanomaterials as photocatalysts for water-splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 584-601.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhen & Wang, Yiping & Vivar, Marta & Fuentes, Manuel & Zhu, Li & Qin, Lianwei, 2014. "Photovoltaic and photocatalytic performance study of SOLWAT system for the degradation of Methylene Blue, Acid Red 26 and 4-Chlorophenol," Applied Energy, Elsevier, vol. 120(C), pages 1-10.
    2. Liu, Liqun & Meng, Xiaoli & Liu, Chunxia, 2016. "A review of maximum power point tracking methods of PV power system at uniform and partial shading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1500-1507.
    3. Ishaque, Kashif & Salam, Zainal & Shamsudin, Amir & Amjad, Muhammad, 2012. "A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 99(C), pages 414-422.
    4. Hug, Hubert & Bader, Michael & Mair, Peter & Glatzel, Thilo, 2014. "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Applied Energy, Elsevier, vol. 115(C), pages 216-225.
    5. Wu, Chun-Te & Kuo, Hsiu-Po & Tsai, Hung-An & Pan, Wen-Chueh, 2012. "Rapid dye-sensitized solar cell working electrode preparation using far infrared rapid thermal annealing," Applied Energy, Elsevier, vol. 100(C), pages 138-143.
    6. Kang, H.Y. & Wang, H. Paul, 2012. "Cu@C dispersed TiO2 for dye-sensitized solar cell photoanodes," Applied Energy, Elsevier, vol. 100(C), pages 144-147.
    7. Wang, Xiaoyue & Li, Haibo & Liu, Yong & Zhao, Wenxia & Liang, Chaolun & Huang, Hong & Mo, Delin & Liu, Zhong & Yu, Xiao & Deng, Youjun & Shen, Hui, 2012. "Hydrothermal synthesis of well-aligned hierarchical TiO2 tubular macrochannel arrays with large surface area for high performance dye-sensitized solar cells," Applied Energy, Elsevier, vol. 99(C), pages 198-205.
    8. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    9. Yilmaz, Ceyhun & Kanoglu, Mehmet, 2014. "Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis," Energy, Elsevier, vol. 69(C), pages 592-602.
    10. Zedong Zhao & Rong Wang & Chengxin Peng & Wuji Chen & Tianqi Wu & Bo Hu & Weijun Weng & Ying Yao & Jiaxi Zeng & Zhihong Chen & Peiying Liu & Yicheng Liu & Guisheng Li & Jia Guo & Hongbin Lu & Zaiping , 2021. "Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    11. Shuyan Yu & Huiying Zhang & Congju Li, 2023. "Solvothermal In-Situ Synthesis of MIL-53(Fe)@Carbon Felt Photocatalytic Membrane for Rhodamine B Degradation," IJERPH, MDPI, vol. 20(5), pages 1-13, March.
    12. Sivasakthi, Sethuraman & Gurunathan, Karuppasamy, 2020. "Graphitic carbon nitride bedecked with CuO/ZnO hetero-interface microflower towards high photocatalytic performance," Renewable Energy, Elsevier, vol. 159(C), pages 786-800.
    13. Wenjie Zang & Jaeha Lee & Peter Tieu & Xingxu Yan & George W. Graham & Ich C. Tran & Peikui Wang & Phillip Christopher & Xiaoqing Pan, 2024. "Distribution of Pt single atom coordination environments on anatase TiO2 supports controls reactivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Lee, Hyo Mun & Yoon, Jong Ho, 2018. "Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up," Applied Energy, Elsevier, vol. 225(C), pages 1013-1021.
    15. Yufen Chen & Lluís Soler & Claudio Cazorla & Jana Oliveras & Neus G. Bastús & Víctor F. Puntes & Jordi Llorca, 2023. "Facet-engineered TiO2 drives photocatalytic activity and stability of supported noble metal clusters during H2 evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Yan, Jianhui & Yang, Haihua & Tang, Yougen & Lu, Zhouguang & Zheng, Shuqin & Yao, Maohai & Han, Yong, 2009. "Synthesis and photocatalytic activity of CuYyFe2−yO4–CuCo2O4 nanocomposites for H2 evolution under visible light irradiation," Renewable Energy, Elsevier, vol. 34(11), pages 2399-2403.
    17. Sharma, Shailja & Pai, Mrinal R. & Kaur, Gurpreet & Divya, & Satsangi, Vibha R. & Dass, Sahab & Shrivastav, Rohit, 2019. "Efficient hydrogen generation on CuO core/AgTiO2 shell nano-hetero-structures by photocatalytic splitting of water," Renewable Energy, Elsevier, vol. 136(C), pages 1202-1216.
    18. Samokhvalov, Alexander, 2017. "Hydrogen by photocatalysis with nitrogen codoped titanium dioxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 981-1000.
    19. Moharana, Manoj Kumar & Peela, Nageswara Rao & Khandekar, Sameer & Kunzru, Deepak, 2011. "Distributed hydrogen production from ethanol in a microfuel processor: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 524-533, January.
    20. Su, Shanhe & Liu, Tie & Wang, Yuan & Chen, Xiaohang & Wang, Jintong & Chen, Jincan, 2014. "Performance optimization analyses and parametric design criteria of a dye-sensitized solar cell thermoelectric hybrid device," Applied Energy, Elsevier, vol. 120(C), pages 16-22.

    More about this item

    Keywords

    TiO2 nanosheets; Photocatalysis; Reactive facets; Codoping;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:112:y:2013:i:c:p:1190-1197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.