IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v57y2016icp584-601.html
   My bibliography  Save this article

Principles on design and fabrication of nanomaterials as photocatalysts for water-splitting

Author

Listed:
  • Pan, Hui

Abstract

As an energy carrier, hydrogen has been extensively studied to satisfy the increasing demand on green energy. Efficiently producing hydrogen from water under sunlight is one of the challenging and important topics in hydrogen energy technology. Photocatalyst plays a critical role for the photo-production of hydrogen from water. It is essential to design novel photocatalysts with enhanced efficiency for the increasing demand on energy. In this paper, recent development on novel strategies to design photocatalysts and novel nanomaterials for efficient production of hydrogen is comprehensively reviewed based on fundamental principles. The strategies, including codoping, hydrogenation, defect engineering, sensitization, formation of heterojunction, metal decoration, band-edge-states modification, and novel designs of cell structures (tandem cell), are systematically discussed. Nanomaterials, including oxides (such as TiO2, Ta2O5, Fe2O3 and SrTiO3) and nitrides (such as GaN, graphitic carbon nitride, and Ta2N3), are investigated. It is shown that these strategies can generally apply to all of materials, such as oxide and nitride semiconductors. It is believed that maximal conversion efficiency could be achieved by optimizing the electronic structures of photocatalysts and engineering the structures of cells.

Suggested Citation

  • Pan, Hui, 2016. "Principles on design and fabrication of nanomaterials as photocatalysts for water-splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 584-601.
  • Handle: RePEc:eee:rensus:v:57:y:2016:i:c:p:584-601
    DOI: 10.1016/j.rser.2015.12.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115015002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. In Sun Cho & Chi Hwan Lee & Yunzhe Feng & Manca Logar & Pratap M. Rao & Lili Cai & Dong Rip Kim & Robert Sinclair & Xiaolin Zheng, 2013. "Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance," Nature Communications, Nature, vol. 4(1), pages 1-10, June.
    2. Wang, Bin & Leung, Michael K.H. & Lu, Xiao-Ying & Chen, Si-Ying, 2013. "Synthesis and photocatalytic activity of boron and fluorine codoped TiO2 nanosheets with reactive facets," Applied Energy, Elsevier, vol. 112(C), pages 1190-1197.
    3. Ni, Meng & Leung, Michael K.H. & Leung, Dennis Y.C. & Sumathy, K., 2007. "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 401-425, April.
    4. Kazuhiko Maeda & Kentaro Teramura & Daling Lu & Tsuyoshi Takata & Nobuo Saito & Yasunobu Inoue & Kazunari Domen, 2006. "Photocatalyst releasing hydrogen from water," Nature, Nature, vol. 440(7082), pages 295-295, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Attia, Yasser & Samer, Mohamed, 2017. "Metal clusters: New era of hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 878-892.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ail, Snehesh Shivananda & Dasappa, S., 2016. "Biomass to liquid transportation fuel via Fischer Tropsch synthesis – Technology review and current scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 267-286.
    2. Chen, Rong & Li, Lin & Zhu, Xun & Wang, Hong & Liao, Qiang & Zhang, Mu-Xing, 2015. "Highly-durable optofluidic microreactor for photocatalytic water splitting," Energy, Elsevier, vol. 83(C), pages 797-804.
    3. Wang, Bin & Wang, Shifeng & Tang, Yuanyuan & Tsang, Chi-Wing & Dai, Jinchuan & Leung, Michael K.H. & Lu, Xiao-Ying, 2019. "Micro/nanostructured MnCo2O4.5 anodes with high reversible capacity and excellent rate capability for next generation lithium-ion batteries," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    5. Yilmaz, Ceyhun & Kanoglu, Mehmet, 2014. "Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis," Energy, Elsevier, vol. 69(C), pages 592-602.
    6. Tasleem, Sehar & Tahir, Muhammad, 2020. "Current trends in strategies to improve photocatalytic performance of perovskites materials for solar to hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Shuyan Yu & Huiying Zhang & Congju Li, 2023. "Solvothermal In-Situ Synthesis of MIL-53(Fe)@Carbon Felt Photocatalytic Membrane for Rhodamine B Degradation," IJERPH, MDPI, vol. 20(5), pages 1-13, March.
    8. Sivasakthi, Sethuraman & Gurunathan, Karuppasamy, 2020. "Graphitic carbon nitride bedecked with CuO/ZnO hetero-interface microflower towards high photocatalytic performance," Renewable Energy, Elsevier, vol. 159(C), pages 786-800.
    9. Yan, Jianhui & Yang, Haihua & Tang, Yougen & Lu, Zhouguang & Zheng, Shuqin & Yao, Maohai & Han, Yong, 2009. "Synthesis and photocatalytic activity of CuYyFe2−yO4–CuCo2O4 nanocomposites for H2 evolution under visible light irradiation," Renewable Energy, Elsevier, vol. 34(11), pages 2399-2403.
    10. Sharma, Shailja & Pai, Mrinal R. & Kaur, Gurpreet & Divya, & Satsangi, Vibha R. & Dass, Sahab & Shrivastav, Rohit, 2019. "Efficient hydrogen generation on CuO core/AgTiO2 shell nano-hetero-structures by photocatalytic splitting of water," Renewable Energy, Elsevier, vol. 136(C), pages 1202-1216.
    11. Samokhvalov, Alexander, 2017. "Hydrogen by photocatalysis with nitrogen codoped titanium dioxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 981-1000.
    12. Moharana, Manoj Kumar & Peela, Nageswara Rao & Khandekar, Sameer & Kunzru, Deepak, 2011. "Distributed hydrogen production from ethanol in a microfuel processor: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 524-533, January.
    13. Mohamad Fakhrul Ridhwan Samsudin, 2023. "Photovoltaic-Assisted Photo(electro)catalytic Hydrogen Production: A Review," Energies, MDPI, vol. 16(15), pages 1-19, August.
    14. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    15. Dingenen, Fons & Verbruggen, Sammy W., 2021. "Tapping hydrogen fuel from the ocean: A review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    16. Benali Rerbal & Tarik Ouahrani, 2021. "Enhancement of optoelectronic properties of layered MgIn $$_{2}$$ 2 Se $$_{4}$$ 4 compound under uniaxial strain, an ab initio study," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(9), pages 1-10, September.
    17. Wang, Zhen & Wang, Yiping & Vivar, Marta & Fuentes, Manuel & Zhu, Li & Qin, Lianwei, 2014. "Photovoltaic and photocatalytic performance study of SOLWAT system for the degradation of Methylene Blue, Acid Red 26 and 4-Chlorophenol," Applied Energy, Elsevier, vol. 120(C), pages 1-10.
    18. Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
    19. Ganesh, Ibram, 2015. "Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 904-932.
    20. Wang, H.Z. & Leung, D.Y.C. & Leung, M.K.H. & Ni, M., 2009. "A review on hydrogen production using aluminum and aluminum alloys," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 845-853, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:57:y:2016:i:c:p:584-601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.