IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v78y2017icp698-709.html
   My bibliography  Save this article

Natural dyes as TIO2 sensitizers with membranes for photoelectrochemical water splitting: An overview

Author

Listed:
  • Jaafar, Siti Nur Hidayah
  • Minggu, Lorna Jeffery
  • Arifin, Khuzaimah
  • Kassim, Mohammad B.
  • Wan, Wan Ramli Daud

Abstract

The development of titanium dioxide-based semiconductors has been widely studied due to the efficiency of this material in photoelectrochemical water splitting. However, the large band gap of titanium dioxide can only absorb UV light, thus reducing its performance in photoelectrochemical applications. Moreover, the recombination of electron-hole pairs also affects the efficiency of phototelectrochemical reactions. Thus, many efforts have been made to enhance the performance of titanium dioxide, and considerable attention has been focused on dye sensitizers, particularly natural dyes, due to their environmental friendliness and low cost. In addition, dye sensitizers exhibit fast electron injection and slow backward reactions. However, natural dye sensitizers are unstable in solution, thus requiring a protective layer, such as a conductive polymer layer. This paper presents an overview of common pigments found in natural dyes, extraction methods, the general efficiency of natural dyes, the types of natural dyes used in water splitting and membranes used as protective layers.

Suggested Citation

  • Jaafar, Siti Nur Hidayah & Minggu, Lorna Jeffery & Arifin, Khuzaimah & Kassim, Mohammad B. & Wan, Wan Ramli Daud, 2017. "Natural dyes as TIO2 sensitizers with membranes for photoelectrochemical water splitting: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 698-709.
  • Handle: RePEc:eee:rensus:v:78:y:2017:i:c:p:698-709
    DOI: 10.1016/j.rser.2017.04.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117306196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.04.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hug, Hubert & Bader, Michael & Mair, Peter & Glatzel, Thilo, 2014. "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Applied Energy, Elsevier, vol. 115(C), pages 216-225.
    2. Ludin, Norasikin A. & Al-Alwani Mahmoud, A.M. & Bakar Mohamad, Abu & Kadhum, Abd. Amir H. & Sopian, Kamaruzzaman & Abdul Karim, Nor Shazlinah, 2014. "Review on the development of natural dye photosensitizer for dye-sensitized solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 386-396.
    3. Ni, Meng & Leung, Michael K.H. & Leung, Dennis Y.C. & Sumathy, K., 2007. "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 401-425, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseinnezhad, Mozhgan & Gharanjig, Kamaladin & Moradian, Siamak & Saeb, Mohammad Reza, 2017. "In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration?," Energy, Elsevier, vol. 134(C), pages 864-870.
    2. Kumara, N.T.R.N. & Lim, Andery & Lim, Chee Ming & Petra, Mohamad Iskandar & Ekanayake, Piyasiri, 2017. "Recent progress and utilization of natural pigments in dye sensitized solar cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 301-317.
    3. Shalini, S. & Balasundara prabhu, R. & Prasanna, S. & Mallick, Tapas K. & Senthilarasu, S., 2015. "Review on natural dye sensitized solar cells: Operation, materials and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1306-1325.
    4. Richhariya, Geetam & Kumar, Anil & Tekasakul, Perapong & Gupta, Bhupendra, 2017. "Natural dyes for dye sensitized solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 705-718.
    5. Maddah, Hisham A. & Berry, Vikas & Behura, Sanjay K., 2020. "Biomolecular photosensitizers for dye-sensitized solar cells: Recent developments and critical insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    6. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    7. Maddah, Hisham A. & Aryadwita, Lila & Berry, Vikas & Behura, Sanjay K., 2021. "Perovskite semiconductor-engineered cascaded molecular energy levels in naturally-sensitized photoanodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    9. Sivasakthi, Sethuraman & Gurunathan, Karuppasamy, 2020. "Graphitic carbon nitride bedecked with CuO/ZnO hetero-interface microflower towards high photocatalytic performance," Renewable Energy, Elsevier, vol. 159(C), pages 786-800.
    10. Yan, Jianhui & Yang, Haihua & Tang, Yougen & Lu, Zhouguang & Zheng, Shuqin & Yao, Maohai & Han, Yong, 2009. "Synthesis and photocatalytic activity of CuYyFe2−yO4–CuCo2O4 nanocomposites for H2 evolution under visible light irradiation," Renewable Energy, Elsevier, vol. 34(11), pages 2399-2403.
    11. Moharana, Manoj Kumar & Peela, Nageswara Rao & Khandekar, Sameer & Kunzru, Deepak, 2011. "Distributed hydrogen production from ethanol in a microfuel processor: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 524-533, January.
    12. Devadiga, Dheeraj & Selvakumar, Muthu & Shetty, Prakasha & Santosh, Mysore Sridhar, 2022. "The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
    14. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    15. Yang, Weijuan & Zhang, Tianyou & Liu, Jianzhong & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2015. "Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature," Energy, Elsevier, vol. 93(P1), pages 451-457.
    16. Kumar, Sanjay & Jain, Ankur & Ichikawa, T. & Kojima, Y. & Dey, G.K., 2017. "Development of vanadium based hydrogen storage material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 791-800.
    17. Reilly, Kevin & Wilkinson, David P. & Taghipour, Fariborz, 2018. "Photocatalytic water splitting in a fluidized bed system: Computational modeling and experimental studies," Applied Energy, Elsevier, vol. 222(C), pages 423-436.
    18. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    19. Ahmed Hussain Jawhari, 2022. "Novel Nanomaterials for Hydrogen Production and Storage: Evaluating the Futurity of Graphene/Graphene Composites in Hydrogen Energy," Energies, MDPI, vol. 15(23), pages 1-16, November.
    20. El Naggar, Ahmed M.A. & Gobara, Heba M. & Nassar, Ibrahim M., 2015. "Novel nano-structured for the improvement of photo-catalyzed hydrogen production via water splitting with in-situ nano-carbon formation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1205-1216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:78:y:2017:i:c:p:698-709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.