IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i11p2399-2403.html
   My bibliography  Save this article

Synthesis and photocatalytic activity of CuYyFe2−yO4–CuCo2O4 nanocomposites for H2 evolution under visible light irradiation

Author

Listed:
  • Yan, Jianhui
  • Yang, Haihua
  • Tang, Yougen
  • Lu, Zhouguang
  • Zheng, Shuqin
  • Yao, Maohai
  • Han, Yong

Abstract

Spinel-type CuYyFe2−yO4–CuCo2O4 nanocomposites have been successfully synthesized via a facile citric acid (CA)-assisted sol–gel method. And the as-synthesized nanocomposites have been characterized by techniques of X-ray diffraction (XRD), nitrogen adsorption BET method, and transmission electron microscopy (TEM). The samples are composed of primary ultrafine nanoparticles with nearly spherical morphology and mean particle size of about 80nm. Moreover, the photocatalytic H2 evolution activity of the as-obtained samples has been evaluated from aqueous oxalic acid solution under visible light irradiation. The influence of photocatalyst type, calcination temperature, Y3+ doping content, and the durability of the as-obtained photocatalyst have been investigated in detail. The best photocatalytic H2 evolution activity was obtained over the as-synthesized CuY0.08Fe1.92O4–CuCo2O4 nanocomposite.

Suggested Citation

  • Yan, Jianhui & Yang, Haihua & Tang, Yougen & Lu, Zhouguang & Zheng, Shuqin & Yao, Maohai & Han, Yong, 2009. "Synthesis and photocatalytic activity of CuYyFe2−yO4–CuCo2O4 nanocomposites for H2 evolution under visible light irradiation," Renewable Energy, Elsevier, vol. 34(11), pages 2399-2403.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:11:p:2399-2403
    DOI: 10.1016/j.renene.2009.02.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109000883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.02.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saadi, S. & Bouguelia, A. & Trari, M., 2006. "Photoassisted hydrogen evolution over spinel CuM2O4 (M=Al, Cr, Mn, Fe and Co)," Renewable Energy, Elsevier, vol. 31(14), pages 2245-2256.
    2. Ni, Meng & Leung, Michael K.H. & Leung, Dennis Y.C. & Sumathy, K., 2007. "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 401-425, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    2. Yilmaz, Ceyhun & Kanoglu, Mehmet, 2014. "Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis," Energy, Elsevier, vol. 69(C), pages 592-602.
    3. Shuyan Yu & Huiying Zhang & Congju Li, 2023. "Solvothermal In-Situ Synthesis of MIL-53(Fe)@Carbon Felt Photocatalytic Membrane for Rhodamine B Degradation," IJERPH, MDPI, vol. 20(5), pages 1-13, March.
    4. Sivasakthi, Sethuraman & Gurunathan, Karuppasamy, 2020. "Graphitic carbon nitride bedecked with CuO/ZnO hetero-interface microflower towards high photocatalytic performance," Renewable Energy, Elsevier, vol. 159(C), pages 786-800.
    5. Sharma, Shailja & Pai, Mrinal R. & Kaur, Gurpreet & Divya, & Satsangi, Vibha R. & Dass, Sahab & Shrivastav, Rohit, 2019. "Efficient hydrogen generation on CuO core/AgTiO2 shell nano-hetero-structures by photocatalytic splitting of water," Renewable Energy, Elsevier, vol. 136(C), pages 1202-1216.
    6. Samokhvalov, Alexander, 2017. "Hydrogen by photocatalysis with nitrogen codoped titanium dioxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 981-1000.
    7. Moharana, Manoj Kumar & Peela, Nageswara Rao & Khandekar, Sameer & Kunzru, Deepak, 2011. "Distributed hydrogen production from ethanol in a microfuel processor: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 524-533, January.
    8. Mohamad Fakhrul Ridhwan Samsudin, 2023. "Photovoltaic-Assisted Photo(electro)catalytic Hydrogen Production: A Review," Energies, MDPI, vol. 16(15), pages 1-19, August.
    9. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    10. Dingenen, Fons & Verbruggen, Sammy W., 2021. "Tapping hydrogen fuel from the ocean: A review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    11. Wang, Zhen & Wang, Yiping & Vivar, Marta & Fuentes, Manuel & Zhu, Li & Qin, Lianwei, 2014. "Photovoltaic and photocatalytic performance study of SOLWAT system for the degradation of Methylene Blue, Acid Red 26 and 4-Chlorophenol," Applied Energy, Elsevier, vol. 120(C), pages 1-10.
    12. Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
    13. Ganesh, Ibram, 2015. "Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 904-932.
    14. Wang, H.Z. & Leung, D.Y.C. & Leung, M.K.H. & Ni, M., 2009. "A review on hydrogen production using aluminum and aluminum alloys," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 845-853, May.
    15. Hou, Tengfei & Zhang, Shaoyin & Chen, Yongdong & Wang, Dazhi & Cai, Weijie, 2015. "Hydrogen production from ethanol reforming: Catalysts and reaction mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 132-148.
    16. Yang, Weijuan & Zhang, Tianyou & Liu, Jianzhong & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2015. "Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature," Energy, Elsevier, vol. 93(P1), pages 451-457.
    17. Kumar, Sanjay & Jain, Ankur & Ichikawa, T. & Kojima, Y. & Dey, G.K., 2017. "Development of vanadium based hydrogen storage material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 791-800.
    18. Reilly, Kevin & Wilkinson, David P. & Taghipour, Fariborz, 2018. "Photocatalytic water splitting in a fluidized bed system: Computational modeling and experimental studies," Applied Energy, Elsevier, vol. 222(C), pages 423-436.
    19. Yoong, L.S. & Chong, F.K. & Dutta, Binay K., 2009. "Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light," Energy, Elsevier, vol. 34(10), pages 1652-1661.
    20. Boudjemaa, A. & Bouarab, R. & Saadi, S. & Bouguelia, A. & Trari, M., 2009. "Photoelectrochemical H2-generation over Spinel FeCr2O4 in X2- solutions (X2-Â =Â S2- and )," Applied Energy, Elsevier, vol. 86(7-8), pages 1080-1086, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:11:p:2399-2403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.