IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v102y2013icp461-475.html
   My bibliography  Save this article

Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production

Author

Listed:
  • Jonker, J.G.G.
  • Faaij, A.P.C.

Abstract

This paper determines the energy consumption ratio and overall bio-energy production costs of micro-algae cultivation, harvesting and conversion to secondary energy carriers, thus helping to clarify future perspectives of micro-algae production for energy purposes. A limitation growth model is developed, which determines the productivity of micro-algae for different climate profiles. Total direct and indirect energy consumption ratios for the production of heat, fuels and electricity derived from micro-algae are calculated. Overall direct energy consumption ratio for raceway ponds is 0.06 for the optimal case, indirect energy consumption ratio for that case is 0.74. Direct energy consumption ratio in horizontal tubular systems is 0.32 for the optimal case, indirect energy consumption ratio for that case is 117. The implementation of different improvement options could reduce the indirect energy consumption ratio by fifty percent for both raceway ponds and horizontal tubular systems in the optimistic scenario. Prominent elements of the energy consumption ratios are carbon dioxide supply for raceway ponds and circulation power consumption for horizontal tubular systems. The lower end of fuel production cost calculated for raceway ponds is 136€2010/GJ and 153€2010/GJ for horizontal tubular systems (non-renewable gasoline and diesel is about 5–20€/GJ). Considering possible improvement options overall bio-energy production costs could be reduced by one-fourth. Current results suggest that micro-algae cultivation is not suitable for dedicated bio-energy production in considered cultivation, harvesting and conversion options. Coproduction of bio-energy with high-value products are more viable, but is not considered in this research.

Suggested Citation

  • Jonker, J.G.G. & Faaij, A.P.C., 2013. "Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production," Applied Energy, Elsevier, vol. 102(C), pages 461-475.
  • Handle: RePEc:eee:appene:v:102:y:2013:i:c:p:461-475
    DOI: 10.1016/j.apenergy.2012.07.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912006629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.07.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Huntley & Donald Redalje, 2007. "CO 2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 573-608, May.
    2. Andre Faaij, 2006. "Modern Biomass Conversion Technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 335-367, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wieczorek, Nils & Kucuker, Mehmet Ali & Kuchta, Kerstin, 2014. "Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process," Applied Energy, Elsevier, vol. 132(C), pages 108-117.
    2. Thorin, Eva & Olsson, Jesper & Schwede, Sebastian & Nehrenheim, Emma, 2018. "Co-digestion of sewage sludge and microalgae – Biogas production investigations," Applied Energy, Elsevier, vol. 227(C), pages 64-72.
    3. Teo, Chee Loong & Jamaluddin, Haryati & Zain, Nur Azimah Mohd & Idris, Ani, 2014. "Biodiesel production via lipase catalysed transesterification of microalgae lipids from Tetraselmis sp," Renewable Energy, Elsevier, vol. 68(C), pages 1-5.
    4. Jacob, Amita & Xia, Ao & Murphy, Jerry D., 2015. "A perspective on gaseous biofuel production from micro-algae generated from CO2 from a coal-fired power plant," Applied Energy, Elsevier, vol. 148(C), pages 396-402.
    5. Giostri, A. & Binotti, M. & Macchi, E., 2016. "Microalgae cofiring in coal power plants: Innovative system layout and energy analysis," Renewable Energy, Elsevier, vol. 95(C), pages 449-464.
    6. Boruff, Bryan J. & Moheimani, Navid R. & Borowitzka, Michael A., 2015. "Identifying locations for large-scale microalgae cultivation in Western Australia: A GIS approach," Applied Energy, Elsevier, vol. 149(C), pages 379-391.
    7. Minghao Chen & Yixuan Chen & Qingtao Zhang, 2021. "A Review of Energy Consumption in the Acquisition of Bio-Feedstock for Microalgae Biofuel Production," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    8. Yan, Yunjun & Li, Xiang & Wang, Guilong & Gui, Xiaohua & Li, Guanlin & Su, Feng & Wang, Xiaofeng & Liu, Tao, 2014. "Biotechnological preparation of biodiesel and its high-valued derivatives: A review," Applied Energy, Elsevier, vol. 113(C), pages 1614-1631.
    9. Fasahati, Peyman & Woo, Hee Chul & Liu, J. Jay, 2015. "Industrial-scale bioethanol production from brown algae: Effects of pretreatment processes on plant economics," Applied Energy, Elsevier, vol. 139(C), pages 175-187.
    10. Sawant, S.S. & Gosavi, S.N. & Khadamkar, H.P. & Mathpati, C.S. & Pandit, Reena & Lali, A.M., 2019. "Energy efficient design of high depth raceway pond using computational fluid dynamics," Renewable Energy, Elsevier, vol. 133(C), pages 528-537.
    11. Togarcheti, Sarat Chandra & Mediboyina, Maneesh kumar & Chauhan, Vikas Singh & Mukherji, Suparna & Ravi, Sarada & Mudliar, Sandeep Narayan, 2017. "Life cycle assessment of microalgae based biodiesel production to evaluate the impact of biomass productivity and energy source," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 286-294.
    12. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    13. Dębowski, Marcin & Zieliński, Marcin & Grala, Anna & Dudek, Magda, 2013. "Algae biomass as an alternative substrate in biogas production technologies—Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 596-604.
    14. Hallenbeck, P.C. & Grogger, M. & Mraz, M. & Veverka, D., 2016. "Solar biofuels production with microalgae," Applied Energy, Elsevier, vol. 179(C), pages 136-145.
    15. Chaudry, Sofia & Bahri, Parisa A. & Moheimani, Navid R., 2015. "Pathways of processing of wet microalgae for liquid fuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1240-1250.
    16. Chen, QianQian & Tang, ZhiYong & Lei, Yang & Sun, YuHan & Jiang, MianHeng, 2015. "Feasibility analysis of nuclear–coal hybrid energy systems from the perspective of low-carbon development," Applied Energy, Elsevier, vol. 158(C), pages 619-630.
    17. Tredici, M.R. & Bassi, N. & Prussi, M. & Biondi, N. & Rodolfi, L. & Chini Zittelli, G. & Sampietro, G., 2015. "Energy balance of algal biomass production in a 1-ha “Green Wall Panel” plant: How to produce algal biomass in a closed reactor achieving a high Net Energy Ratio," Applied Energy, Elsevier, vol. 154(C), pages 1103-1111.
    18. Zhu, Liandong & Hiltunen, Erkki & Shu, Qing & Zhou, Weizheng & Li, Zhaohua & Wang, Zhongming, 2014. "Biodiesel production from algae cultivated in winter with artificial wastewater through pH regulation by acetic acid," Applied Energy, Elsevier, vol. 128(C), pages 103-110.
    19. Du, Xinrui & Tao, Yi & Li, Huan & Liu, Yueling & Feng, Kai, 2019. "Synergistic methane production from the anaerobic co-digestion of Spirulina platensis with food waste and sewage sludge at high solid concentrations," Renewable Energy, Elsevier, vol. 142(C), pages 55-61.
    20. Attila Bai & József Popp & Károly Pető & Irén Szőke & Mónika Harangi-Rákos & Zoltán Gabnai, 2017. "The Significance of Forests and Algae in CO 2 Balance: A Hungarian Case Study," Sustainability, MDPI, vol. 9(5), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    2. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    3. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    4. Ji, Li-Qun & Zhang, Chuang & Fang, Jing-Qi, 2017. "Economic analysis of converting of waste agricultural biomass into liquid fuel: A case study on a biofuel plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 224-229.
    5. Paiano, Annarita & Lagioia, Giovanni, 2016. "Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case," Energy Policy, Elsevier, vol. 91(C), pages 161-173.
    6. Ketheesan, B. & Nirmalakhandan, N., 2011. "Development of a new airlift-driven raceway reactor for algal cultivation," Applied Energy, Elsevier, vol. 88(10), pages 3370-3376.
    7. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    8. Singh, Anoop & Olsen, Stig Irving, 2011. "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels," Applied Energy, Elsevier, vol. 88(10), pages 3548-3555.
    9. Shoko Kusama & Seiji Kojima & Ken Kimura & Ginga Shimakawa & Chikahiro Miyake & Kenya Tanaka & Yasuaki Okumura & Shuji Nakanishi, 2022. "Order-of-magnitude enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer membrane deprivation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    11. Banerjee, Sanjukta & Banerjee, Srijoni & Ghosh, Ananta K. & Das, Debabrata, 2020. "Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Hend Dakhel Alhassany & Safaa Malik Abbas & Marcos Tostado-Véliz & David Vera & Salah Kamel & Francisco Jurado, 2022. "Review of Bioenergy Potential from the Agriculture Sector in Iraq," Energies, MDPI, vol. 15(7), pages 1-17, April.
    13. Åhman, Max, 2010. "Biomethane in the transport sector--An appraisal of the forgotten option," Energy Policy, Elsevier, vol. 38(1), pages 208-217, January.
    14. Gojiya, Anil & Deb, Dipankar & Iyer, Kannan K.R., 2019. "Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue," Renewable Energy, Elsevier, vol. 134(C), pages 416-425.
    15. Zhou, Wenguang & Chen, Paul & Min, Min & Ma, Xiaochen & Wang, Jinghan & Griffith, Richard & Hussain, Fida & Peng, Pu & Xie, Qinglong & Li, Yun & Shi, Jian & Meng, Jianzong & Ruan, Roger, 2014. "Environment-enhancing algal biofuel production using wastewaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 256-269.
    16. W. A. M. A. N. Illankoon & Chiara Milanese & Alessandro Girella & Puhulwella G. Rathnasiri & K. H. M. Sudesh & Maria Medina Llamas & Maria Cristina Collivignarelli & Sabrina Sorlini, 2022. "Agricultural Biomass-Based Power Generation Potential in Sri Lanka: A Techno-Economic Analysis," Energies, MDPI, vol. 15(23), pages 1-18, November.
    17. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Schmid, Erwin, 2011. "Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria," Energy Policy, Elsevier, vol. 39(6), pages 3261-3280, June.
    18. Kumar, Kanhaiya & Mishra, Sanjiv K. & Shrivastav, Anupama & Park, Min S. & Yang, Ji-Won, 2015. "Recent trends in the mass cultivation of algae in raceway ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 875-885.
    19. Nisar, Arsalan & Monroy, Carlos Rodríguez, 2012. "Potential of the renewable energy development in Jammu and Kashmir, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5260-5267.
    20. Vasiliki Kamperidou & Paschalina Terzopoulou, 2021. "Anaerobic Digestion of Lignocellulosic Waste Materials," Sustainability, MDPI, vol. 13(22), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:461-475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.