IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v52y2015icp1240-1250.html
   My bibliography  Save this article

Pathways of processing of wet microalgae for liquid fuel production: A critical review

Author

Listed:
  • Chaudry, Sofia
  • Bahri, Parisa A.
  • Moheimani, Navid R.

Abstract

Microalgae have tremendous potential for producing liquid renewable fuel. Many methods for converting microalgae to biofuel have been proposed; however, an economical and energetically feasible route for algal fuel production is yet to be found. This paper presents a review on the comparison of the most promising conversion pathways of microalgae to liquid fuel: hydrothermal liquefaction (HTL), wet extraction and non-destructive extraction. The comparison is based on important assessment parameters of product quality and yield, nutrient recovery, GHG emissions, energy and the cost associated with the production of fuel from microalgae, in order to better understand the pros and cons of each method. It was found that the HTL pathway produces more oil than the wet extraction pathway; however, higher concentrations of unwanted components are present in the HTL oil produced. Less nutrients (N and P) can be recovered in HTL compared to wet extraction. HTL consumes more fossil energy and generates higher GHG emissions than wet extraction, while the production cost of fuel from HTL pathway is lower than wet extraction pathway. There is considerable uncertainty in the comparison of the energy consumption and economics of the HTL pathway and the wet extraction pathway due to different scenarios analysed in the assessment studies. To be able to appropriately compare methodologies, the conversion methods should be analysed from growth to upgradation of oil utilising sufficiently similar assumptions and scenarios. Based on the data in available literature, wet oil extraction is the more appropriate system for biofuel production than HTL. However, the potential of alternative extraction/conversion technologies, such as, non-destructive extraction, need to be further assessed.

Suggested Citation

  • Chaudry, Sofia & Bahri, Parisa A. & Moheimani, Navid R., 2015. "Pathways of processing of wet microalgae for liquid fuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1240-1250.
  • Handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1240-1250
    DOI: 10.1016/j.rser.2015.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115008473
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sophie Fon Sing & Andreas Isdepsky & Michael Borowitzka & Navid Moheimani, 2013. "Production of biofuels from microalgae," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 47-72, January.
    2. Kovacevic, Vujadin & Wesseler, Justus, 2010. "Cost-effectiveness analysis of algae energy production in the EU," Energy Policy, Elsevier, vol. 38(10), pages 5749-5757, October.
    3. Sun, Amy & Davis, Ryan & Starbuck, Meghan & Ben-Amotz, Ami & Pate, Ron & Pienkos, Philip T., 2011. "Comparative cost analysis of algal oil production for biofuels," Energy, Elsevier, vol. 36(8), pages 5169-5179.
    4. Michael Borowitzka & Navid Moheimani, 2013. "Sustainable biofuels from algae," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 13-25, January.
    5. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    6. Moheimani, Navid Reza & Parlevliet, David, 2013. "Sustainable solar energy conversion to chemical and electrical energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 494-504.
    7. Pragya, Namita & Pandey, Krishan K. & Sahoo, P.K., 2013. "A review on harvesting, oil extraction and biofuels production technologies from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 159-171.
    8. Liu, Chun-Zhao & Zheng, Sen & Xu, Ling & Wang, Feng & Guo, Chen, 2013. "Algal oil extraction from wet biomass of Botryococcus braunii by 1,2-dimethoxyethane," Applied Energy, Elsevier, vol. 102(C), pages 971-974.
    9. Jonker, J.G.G. & Faaij, A.P.C., 2013. "Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production," Applied Energy, Elsevier, vol. 102(C), pages 461-475.
    10. Davis, Ryan & Aden, Andy & Pienkos, Philip T., 2011. "Techno-economic analysis of autotrophic microalgae for fuel production," Applied Energy, Elsevier, vol. 88(10), pages 3524-3531.
    11. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    12. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    13. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    14. Edward Frank & Amgad Elgowainy & Jeongwoo Han & Zhichao Wang, 2013. "Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 137-158, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathimani, Thangavel & Mallick, Nirupama, 2018. "A comprehensive review on harvesting of microalgae for biodiesel – Key challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1103-1120.
    2. Xia, Ao & Sun, Chihe & Fu, Qian & Liao, Qiang & Huang, Yun & Zhu, Xun & Li, Qing, 2020. "Biofuel production from wet microalgae biomass: Comparison of physicochemical properties and extraction performance," Energy, Elsevier, vol. 212(C).
    3. Ogbonna, Christiana N. & Nwoba, Emeka G., 2021. "Bio-based flocculants for sustainable harvesting of microalgae for biofuel production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Jackson, Brent A. & Bahri, Parisa A. & Moheimani, Navid R., 2017. "Repetitive non-destructive milking of hydrocarbons from Botryococcus braunii," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1229-1240.
    5. Zhang, Bo & Chen, Jixiang & Kandasamy, Sabariswaran & He, Zhixia, 2020. "Hydrothermal liquefaction of fresh lemon-peel and Spirulina platensis blending -operation parameter and biocrude chemistry investigation," Energy, Elsevier, vol. 193(C).
    6. Arcigni, Francesco & Friso, Riccardo & Collu, Maurizio & Venturini, Mauro, 2019. "Harmonized and systematic assessment of microalgae energy potential for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 614-624.
    7. Grira, Soumaya & Abu Khalifeh, Hadil & Alkhedher, Mohammad & Ramadan, Mohamad, 2023. "The conventional microalgal biofuel production process and the alternative milking pathway: A review," Energy, Elsevier, vol. 277(C).
    8. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    9. Ishika, Tasneema & Moheimani, Navid R. & Bahri, Parisa A., 2017. "Sustainable saline microalgae co-cultivation for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 356-368.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    2. Ishika, Tasneema & Moheimani, Navid R. & Bahri, Parisa A., 2017. "Sustainable saline microalgae co-cultivation for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 356-368.
    3. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Boruff, Bryan J. & Moheimani, Navid R. & Borowitzka, Michael A., 2015. "Identifying locations for large-scale microalgae cultivation in Western Australia: A GIS approach," Applied Energy, Elsevier, vol. 149(C), pages 379-391.
    5. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    6. Esveidi Montserrat Valdovinos-García & Juan Barajas-Fernández & María de los Ángeles Olán-Acosta & Moisés Abraham Petriz-Prieto & Adriana Guzmán-López & Micael Gerardo Bravo-Sánchez, 2020. "Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae ( Chlorella vulgaris ) for Production of Feedstock for Bioenergy," Energies, MDPI, vol. 13(2), pages 1-19, January.
    7. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    8. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    9. Sharifzadeh, Mahdi & Wang, Lei & Shah, Nilay, 2015. "Integrated biorefineries: CO2 utilization for maximum biomass conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 151-161.
    10. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    11. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    12. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    13. Su, Yujie & Song, Kaihui & Zhang, Peidong & Su, Yuqing & Cheng, Jing & Chen, Xiao, 2017. "Progress of microalgae biofuel’s commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 402-411.
    14. Zhu, Liandong, 2015. "Biorefinery as a promising approach to promote microalgae industry: An innovative framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1376-1384.
    15. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    16. Abomohra, Abd El-Fatah & Jin, Wenbiao & Tu, Renjie & Han, Song-Fang & Eid, Mohammed & Eladel, Hamed, 2016. "Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 596-606.
    17. Carriquiry, Miguel A. & Du, Xiaodong & Timilsina, Govinda R., 2011. "Second generation biofuels: Economics and policies," Energy Policy, Elsevier, vol. 39(7), pages 4222-4234, July.
    18. Trivedi, Jayati & Aila, Mounika & Bangwal, D.P. & Kaul, Savita & Garg, M.O., 2015. "Algae based biorefinery—How to make sense?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 295-307.
    19. Giostri, A. & Binotti, M. & Macchi, E., 2016. "Microalgae cofiring in coal power plants: Innovative system layout and energy analysis," Renewable Energy, Elsevier, vol. 95(C), pages 449-464.
    20. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part I," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1427-1445.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1240-1250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.