IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v432y2022ics0096300322004398.html
   My bibliography  Save this article

Investigating the trade-off between self-quarantine and forced quarantine provisions to control an epidemic: An evolutionary approach

Author

Listed:
  • Khan, Md. Mamun-Ur-Rashid
  • Arefin, Md. Rajib
  • Tanimoto, Jun

Abstract

During a pandemic event like the present COVID-19, self-quarantine, mask-wearing, hygiene maintenance, isolation, forced quarantine, and social distancing are the most effective nonpharmaceutical measures to control the epidemic when the vaccination and proper treatments are absent. In this study, we proposed an epidemiological model based on the SEIR dynamics along with the two interventions defined as self-quarantine and forced quarantine by human behavior dynamics. We consider a disease spreading through a population where some people can choose the self-quarantine option of paying some costs and be safer than the remaining ones. The remaining ones act normally and send to forced quarantine by the government if they get infected and symptomatic. The government pays the forced quarantine costs for individuals, and the government has a budget limit to treat the infected ones. Each intervention derived from the so-called behavior model has a dynamical equation that accounts for a proper balance between the costs for each case, the total budget, and the risk of infection. We show that the infection peak cannot be reduced if the authority does not enforce a proactive (quantified by a higher sensitivity parameter) intervention. While comparing the impact of both self- and forced quarantine provisions, our results demonstrate that the latter is more influential to reduce the disease prevalence and the social efficiency deficit (a gap between social optimum payoff and equilibrium payoff).

Suggested Citation

  • Khan, Md. Mamun-Ur-Rashid & Arefin, Md. Rajib & Tanimoto, Jun, 2022. "Investigating the trade-off between self-quarantine and forced quarantine provisions to control an epidemic: An evolutionary approach," Applied Mathematics and Computation, Elsevier, vol. 432(C).
  • Handle: RePEc:eee:apmaco:v:432:y:2022:i:c:s0096300322004398
    DOI: 10.1016/j.amc.2022.127365
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322004398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nenchev, Vladislav, 2020. "Optimal quarantine control of an infectious outbreak," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Amaral, Marco A. & Oliveira, Marcelo M. de & Javarone, Marco A., 2021. "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Stipic, Dorian & Bradac, Mislav & Lipic, Tomislav & Podobnik, Boris, 2021. "Effects of quarantine disobedience and mobility restrictions on COVID-19 pandemic waves in dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Li, Hui-Jia & Xu, Wenzhe & Song, Shenpeng & Wang, Wen-Xuan & Perc, Matjaž, 2021. "The dynamics of epidemic spreading on signed networks," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Dror Meidan & Nava Schulmann & Reuven Cohen & Simcha Haber & Eyal Yaniv & Ronit Sarid & Baruch Barzel, 2021. "Alternating quarantine for sustainable epidemic mitigation," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Tori, Risa & Tanimoto, Jun, 2022. "A study on prosocial behavior of wearing a mask and self-quarantining to prevent the spread of diseases underpinned by evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    7. Chris T Bauch & Samit Bhattacharyya, 2012. "Evolutionary Game Theory and Social Learning Can Determine How Vaccine Scares Unfold," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-12, April.
    8. Alberto Aleta & David Martín-Corral & Ana Pastore y Piontti & Marco Ajelli & Maria Litvinova & Matteo Chinazzi & Natalie E. Dean & M. Elizabeth Halloran & Ira M. Longini Jr & Stefano Merler & Alex Pen, 2020. "Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19," Nature Human Behaviour, Nature, vol. 4(9), pages 964-971, September.
    9. Babaei, A. & Ahmadi, M. & Jafari, H. & Liya, A., 2021. "A mathematical model to examine the effect of quarantine on the spread of coronavirus," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Miyaji, Kohei & Tanimoto, Jun, 2021. "A co-evolutionary model combined mixed-strategy and network adaptation by severing disassortative neighbors promotes cooperation in prisoner’s dilemma games," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    11. Deka, Aniruddha & Bhattacharyya, Samit, 2022. "The effect of human vaccination behaviour on strain competition in an infectious disease: An imitation dynamic approach," Theoretical Population Biology, Elsevier, vol. 143(C), pages 62-76.
    12. Ahsan Habib, Md. & Tanaka, Masaki & Tanimoto, Jun, 2020. "How does conformity promote the enhancement of cooperation in the network reciprocity in spatial prisoner's dilemma games?," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    13. Kabir, KM Ariful & Chowdhury, Atiqur & Tanimoto, Jun, 2021. "An evolutionary game modeling to assess the effect of border enforcement measures and socio-economic cost: Export-importation epidemic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Analysis of SIR epidemic model with information spreading of awareness," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 118-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oestereich, André L. & Pires, Marcelo A. & Crokidakis, Nuno & Cajueiro, Daniel O., 2023. "Optimal rewiring in adaptive networks in multi-coupled vaccination, epidemic and opinion dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Yu, Zhenhua & Zhang, Jingmeng & Zhang, Yun & Cong, Xuya & Li, Xiaobo & Mostafa, Almetwally M., 2024. "Mathematical modeling and simulation for COVID-19 with mutant and quarantined strategy," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Lan, Guijie & Yuan, Sanling, 2023. "Geometric ergodicity and Ω-limit set of an SIRm epidemic model with regime switching," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oestereich, André L. & Pires, Marcelo A. & Crokidakis, Nuno & Cajueiro, Daniel O., 2023. "Optimal rewiring in adaptive networks in multi-coupled vaccination, epidemic and opinion dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Tori, Risa & Tanimoto, Jun, 2022. "A study on prosocial behavior of wearing a mask and self-quarantining to prevent the spread of diseases underpinned by evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    5. Liu, Dandan & Wang, Delu & Mao, Jinqi, 2023. "Study on policy synergy strategy of the central government and local governments in the process of coal de-capacity: Based on a two-stage evolutionary game method," Resources Policy, Elsevier, vol. 80(C).
    6. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2023. "Pathogen diversity in meta-population networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Utsumi, Shinobu & Arefin, Md. Rajib & Tatsukawa, Yuichi & Tanimoto, Jun, 2022. "How and to what extent does the anti-social behavior of violating self-quarantine measures increase the spread of disease?," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    8. Guo, Yifei & Tu, Lilan & Wang, Xianjia, 2024. "The coupled dynamics of awareness and disease: Based on the adaptive mechanism and the surroundings reinforcement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
    9. Mendonça, J.P. & Brum, Arthur A. & Lyra, M.L. & Lira, Sérgio A., 2024. "Evolutionary game dynamics and the phase portrait diversity in a pandemic scenario," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    10. Cui, Guang-Hai & Li, Jun-Li & Dong, Kun-Xiang & Jin, Xing & Yang, Hong-Yong & Wang, Zhen, 2024. "Influence of subsidy policies against insurances on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    11. Ariful Kabir, K.M. & Tanimoto, Jun, 2021. "A cyclic epidemic vaccination model: Embedding the attitude of individuals toward vaccination into SVIS dynamics through social interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    12. Bowen Lu & Shangzhi Yue, 2022. "Analysis of the Evolutionary Game of Three Parties in Environmental Information Disclosure in Sustainability Reports of Listed Forestry Companies in China," Sustainability, MDPI, vol. 14(5), pages 1-23, March.
    13. Kabir, KM Ariful & Chowdhury, Atiqur & Tanimoto, Jun, 2021. "An evolutionary game modeling to assess the effect of border enforcement measures and socio-economic cost: Export-importation epidemic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    15. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    16. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    17. Kulsum, Umma & Alam, Muntasir & Kamrujjaman, Md., 2024. "Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    18. Xie, Xiaoxiao & Huo, Liang'an, 2024. "Co-evolution dynamics between information and epidemic with asymmetric activity levels and community structure in time-varying multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    19. Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2023. "A dynamics model of coupling transmission for multiple different knowledge in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    20. Hausmann, Ricardo & Schetter, Ulrich, 2022. "Horrible trade-offs in a pandemic: Poverty, fiscal space, policy, and welfare," World Development, Elsevier, vol. 153(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:432:y:2022:i:c:s0096300322004398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.