IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v176y2023ics0960077923010263.html
   My bibliography  Save this article

Optimal rewiring in adaptive networks in multi-coupled vaccination, epidemic and opinion dynamics

Author

Listed:
  • Oestereich, André L.
  • Pires, Marcelo A.
  • Crokidakis, Nuno
  • Cajueiro, Daniel O.

Abstract

We investigate the emerging scenarios from an epidemic model with vaccination coupled with opinion dynamics in a non-static network. In contrast to prior studies, our approach involves a multi-coupled process that takes into account the interaction among opinion dynamics, epidemic spreading, vaccination, and network restructuring. The network structure evolves as agents with differing opinions disconnect from one another and connect with agents that share similar opinions about vaccination. We consider a SIS-like model with an extra vaccinated state. Agents can have continuous opinions and every time an agent disconnects from a neighbor, they connect to a new neighbor. Our Monte Carlo simulations have revealed a series of notable results. First, we note a spontaneous emergence of network homophily, accompanied by scenarios with a complete fragmentation of the network. Second, we show the presence of a first-order phase transition with metastable states. Third, we observe the intriguing presence of scenarios with a dual effect: an increase in the probability of rewiring can decrease the infection rate in the long-term, but it can be accompanied by a side effect in the short-term namely the potential amplification the epidemic peak. This non-trivial side effect in the short-term is a transient byproduct of the fragmentation of the network into smaller, disconnected subnetworks. Overall, our non-monotonic results suggest that high values of rewiring that do not lead to the breakup of the network are optimal.

Suggested Citation

  • Oestereich, André L. & Pires, Marcelo A. & Crokidakis, Nuno & Cajueiro, Daniel O., 2023. "Optimal rewiring in adaptive networks in multi-coupled vaccination, epidemic and opinion dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923010263
    DOI: 10.1016/j.chaos.2023.114125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923010263
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, Md. Mamun-Ur-Rashid & Arefin, Md. Rajib & Tanimoto, Jun, 2022. "Investigating the trade-off between self-quarantine and forced quarantine provisions to control an epidemic: An evolutionary approach," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    2. Amaral, Marco A. & Oliveira, Marcelo M. de & Javarone, Marco A., 2021. "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Serge Galam, 2008. "Sociophysics: A Review Of Galam Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 409-440.
    4. Tori, Risa & Tanimoto, Jun, 2022. "A study on prosocial behavior of wearing a mask and self-quarantining to prevent the spread of diseases underpinned by evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Chris T Bauch & Samit Bhattacharyya, 2012. "Evolutionary Game Theory and Social Learning Can Determine How Vaccine Scares Unfold," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-12, April.
    6. Pires, Marcelo A. & Crokidakis, Nuno, 2017. "Dynamics of epidemic spreading with vaccination: Impact of social pressure and engagement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 167-179.
    7. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    8. Pires, Marcelo A. & Sampaio Filho, Cesar I.N. & Herrmann, Hans J. & Andrade, José S., 2023. "Tricritical behavior in epidemic dynamics with vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Haoxiang Xia & Huili Wang & Zhaoguo Xuan, 2011. "Opinion Dynamics: A Multidisciplinary Review and Perspective on Future Research," International Journal of Knowledge and Systems Science (IJKSS), IGI Global, vol. 2(4), pages 72-91, October.
    10. Ichinose, Genki & Kurisaku, Takehiro, 2017. "Positive and negative effects of social impact on evolutionary vaccination game in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 84-90.
    11. Deka, Aniruddha & Bhattacharyya, Samit, 2022. "The effect of human vaccination behaviour on strain competition in an infectious disease: An imitation dynamic approach," Theoretical Population Biology, Elsevier, vol. 143(C), pages 62-76.
    12. Okita, Kouki & Tatsukawa, Yuichi & Utsumi, Shinobu & Arefin, Md. Rajib & Hossain, Md. Anowar & Tanimoto, Jun, 2023. "Stochastic resonance effect observed in a vaccination game with effectiveness framework obeying the SIR process on a scale-free network," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    13. Oestereich, A.L. & Pires, M.A. & Duarte Queirós, S.M. & Crokidakis, N., 2020. "Hysteresis and disorder-induced order in continuous kinetic-like opinion dynamics in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Md. Mamun-Ur-Rashid & Arefin, Md. Rajib & Tanimoto, Jun, 2022. "Investigating the trade-off between self-quarantine and forced quarantine provisions to control an epidemic: An evolutionary approach," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    2. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Mendonça, J.P. & Brum, Arthur A. & Lyra, M.L. & Lira, Sérgio A., 2024. "Evolutionary game dynamics and the phase portrait diversity in a pandemic scenario," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    4. Yu, Zhenhua & Zhang, Jingmeng & Zhang, Yun & Cong, Xuya & Li, Xiaobo & Mostafa, Almetwally M., 2024. "Mathematical modeling and simulation for COVID-19 with mutant and quarantined strategy," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Oliveira, Igor V.G. & Wang, Chao & Dong, Gaogao & Du, Ruijin & Fiore, Carlos E. & Vilela, André L.M. & Stanley, H. Eugene, 2024. "Entropy production on cooperative opinion dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    6. Muslim, Roni & NQZ, Rinto Anugraha & Khalif, Muhammad Ardhi, 2024. "Mass media and its impact on opinion dynamics of the nonlinear q-voter model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    7. Benyun Shi & Guangliang Liu & Hongjun Qiu & Yu-Wang Chen & Shaoliang Peng, 2019. "Voluntary Vaccination through Perceiving Epidemic Severity in Social Networks," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    8. Flores, Lucas S. & Amaral, Marco A. & Vainstein, Mendeli H. & Fernandes, Heitor C.M., 2022. "Cooperation in regular lattices," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    9. Ariful Kabir, K.M. & Tanimoto, Jun, 2021. "A cyclic epidemic vaccination model: Embedding the attitude of individuals toward vaccination into SVIS dynamics through social interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    10. Ding, Hong & Xu, Jia-Hao & Wang, Zhen & Ren, Yi-Zhi & Cui, Guang-Hai, 2018. "Subsidy strategy based on history information can stimulate voluntary vaccination behaviors on seasonal diseases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 390-399.
    11. Lan, Guijie & Yuan, Sanling, 2023. "Geometric ergodicity and Ω-limit set of an SIRm epidemic model with regime switching," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    12. Oestereich, André L. & Crokidakis, Nuno & Cajueiro, Daniel O., 2022. "Impact of memory and bias in kinetic exchange opinion models on random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    13. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    14. Kulsum, Umma & Alam, Muntasir & Kamrujjaman, Md., 2024. "Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    15. Hutzler, S. & Sommer, C. & Richmond, P., 2016. "On the relationship between income, fertility rates and the state of democracy in society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 9-18.
    16. Célestin Coquidé & José Lages & Dima Shepelyansky, 2024. "Opinion Formation in the World Trade Network," Post-Print hal-04461784, HAL.
    17. Fan Zou & Yupeng Li & Jiahuan Huang, 2022. "Group interaction and evolution of customer reviews based on opinion dynamics towards product redesign," Electronic Commerce Research, Springer, vol. 22(4), pages 1131-1151, December.
    18. Yunhan Huang & Quanyan Zhu, 2022. "Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review," Dynamic Games and Applications, Springer, vol. 12(1), pages 7-48, March.
    19. Deka, Aniruddha & Bhattacharyya, Samit, 2022. "The effect of human vaccination behaviour on strain competition in an infectious disease: An imitation dynamic approach," Theoretical Population Biology, Elsevier, vol. 143(C), pages 62-76.
    20. Yunhwan Kim & Ana Vivas Barber & Sunmi Lee, 2020. "Modeling influenza transmission dynamics with media coverage data of the 2009 H1N1 outbreak in Korea," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923010263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.