IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v181y2024ics0960077924002078.html
   My bibliography  Save this article

Mathematical modeling and simulation for COVID-19 with mutant and quarantined strategy

Author

Listed:
  • Yu, Zhenhua
  • Zhang, Jingmeng
  • Zhang, Yun
  • Cong, Xuya
  • Li, Xiaobo
  • Mostafa, Almetwally M.

Abstract

A new nonlinear dynamics model named SEIMQR (Susceptible-Exposed-Infected-Mutant-Quarantined-Recovered) is proposed to study the transmission mechanism of COVID-19 and predict its development tendency. We calculate equilibria and basic reproduction number, and prove the local asymptotic stability of the proposed model. The transcritical bifurcation of the equilibria and sensitivity of important parameters are analyzed. The least square method is employed to estimate model parameters, and then COVID-19 transmission tendency is predicted. The validity of the proposed model is verified by real data in Britain. Simulation results show that it can well simulate the spread of COVID-19 in three different periods, whose mean relative errors are 2.24 %, 2.20 %, and 6.54 %, respectively. Theoretical proofs and numerical simulations indicate that the proposed model is more adaptable to complex epidemics modeling like COVID-19, which can provide theoretical support for scientific epidemics prevention.

Suggested Citation

  • Yu, Zhenhua & Zhang, Jingmeng & Zhang, Yun & Cong, Xuya & Li, Xiaobo & Mostafa, Almetwally M., 2024. "Mathematical modeling and simulation for COVID-19 with mutant and quarantined strategy," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924002078
    DOI: 10.1016/j.chaos.2024.114656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924002078
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Djaoue, Seraphin & Guilsou Kolaye, Gabriel & Abboubakar, Hamadjam & Abba Ari, Ado Adamou & Damakoa, Irepran, 2020. "Mathematical modeling, analysis and numerical simulation of the COVID-19 transmission with mitigation of control strategies used in Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Khan, Md. Mamun-Ur-Rashid & Arefin, Md. Rajib & Tanimoto, Jun, 2022. "Investigating the trade-off between self-quarantine and forced quarantine provisions to control an epidemic: An evolutionary approach," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    3. Mishra, A.M. & Purohit, S.D. & Owolabi, K.M. & Sharma, Y.D., 2020. "A nonlinear epidemiological model considering asymptotic and quarantine classes for SARS CoV-2 virus," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Das, Arghya & Dhar, Abhishek & Goyal, Srashti & Kundu, Anupam & Pandey, Saurav, 2021. "COVID-19: Analytic results for a modified SEIR model and comparison of different intervention strategies," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Nadim, Sk Shahid & Chattopadhyay, Joydev, 2020. "Occurrence of backward bifurcation and prediction of disease transmission with imperfect lockdown: A case study on COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Chris T Bauch & Samit Bhattacharyya, 2012. "Evolutionary Game Theory and Social Learning Can Determine How Vaccine Scares Unfold," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-12, April.
    7. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 58-69.
    8. Annas, Suwardi & Isbar Pratama, Muh. & Rifandi, Muh. & Sanusi, Wahidah & Side, Syafruddin, 2020. "Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.
    10. Batabyal, Saikat, 2021. "COVID-19: Perturbation dynamics resulting chaos to stable with seasonality transmission," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    11. Russell Cheng & Christopher Dye & John Dagpunar & Brian Williams, 2023. "Modelling presymptomatic infectiousness in COVID-19," Journal of Simulation, Taylor & Francis Journals, vol. 17(5), pages 532-543, September.
    12. Zhenhua Yu & Ayesha Sohail & Taher A. Nofal & Joãƒo Manuel R. S. Tavares, 2022. "Explainability Of Neural Network Clustering In Interpreting The Covid-19 Emergency Data," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(05), pages 1-12, August.
    13. Zhu, Cheng-Cheng & Zhu, Jiang, 2021. "Dynamic analysis of a delayed COVID-19 epidemic with home quarantine in temporal-spatial heterogeneous via global exponential attractor method," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    14. Yas Al-Hadeethi & Intesar F. El Ramley & Hiba Mohammed & Abeer Z. Barasheed, 2023. "A New Polymorphic Comprehensive Model for COVID-19 Transition Cycle Dynamics with Extended Feed Streams to Symptomatic and Asymptomatic Infections," Mathematics, MDPI, vol. 11(5), pages 1-27, February.
    15. Kar, T.K. & Nandi, Swapan Kumar & Jana, Soovoojeet & Mandal, Manotosh, 2019. "Stability and bifurcation analysis of an epidemic model with the effect of media," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 188-199.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    2. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    4. Lan, Guijie & Chen, Zhewen & Wei, Chunjin & Zhang, Shuwen, 2018. "Stationary distribution of a stochastic SIQR epidemic model with saturated incidence and degenerate diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 61-77.
    5. Fu, Xiaoming, 2019. "On invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1008-1023.
    6. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    7. Yuan, Yiran & Li, Ning, 2022. "Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    8. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Stationary distribution of a stochastic delayed SVEIR epidemic model with vaccination and saturation incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 849-863.
    9. Khatun, Mst Sebi & Mahato, Kiriti Bhusan & Das, Pritha, 2024. "Dynamics of an SuSaV IR epidemic model with stochastic optimal control and awareness programs," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    10. Liu, Yan & Zhang, Di & Su, Huan & Feng, Jiqiang, 2019. "Stationary distribution for stochastic coupled systems with regime switching and feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    11. Oestereich, André L. & Pires, Marcelo A. & Crokidakis, Nuno & Cajueiro, Daniel O., 2023. "Optimal rewiring in adaptive networks in multi-coupled vaccination, epidemic and opinion dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    12. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing, 2021. "Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Lv, Xuejin & Meng, Xinzhu & Wang, Xinzeng, 2018. "Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 273-279.
    14. Nadim, Sk Shahid & Ghosh, Indrajit & Chattopadhyay, Joydev, 2021. "Short-term predictions and prevention strategies for COVID-19: A model-based study," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    15. Zhao, Yu & Zhang, Liping & Yuan, Sanling, 2018. "The effect of media coverage on threshold dynamics for a stochastic SIS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 248-260.
    16. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    17. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    18. Xin Ai & Xinyu Liu & Yuting Ding & Han Li, 2022. "Dynamic Analysis of a COVID-19 Vaccination Model with a Positive Feedback Mechanism and Time-Delay," Mathematics, MDPI, vol. 10(9), pages 1-24, May.
    19. Huyi Wang & Ge Zhang & Tao Chen & Zhiming Li, 2023. "Threshold Analysis of a Stochastic SIRS Epidemic Model with Logistic Birth and Nonlinear Incidence," Mathematics, MDPI, vol. 11(7), pages 1-17, April.
    20. Kulsum, Umma & Alam, Muntasir & Kamrujjaman, Md., 2024. "Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924002078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.