IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics0960077920303969.html
   My bibliography  Save this article

How does conformity promote the enhancement of cooperation in the network reciprocity in spatial prisoner's dilemma games?

Author

Listed:
  • Ahsan Habib, Md.
  • Tanaka, Masaki
  • Tanimoto, Jun

Abstract

In line with more enhanced network reciprocity, we built a new spatial prisoner's dilemma (SPD) game considering conformity with presumption of lattice for underlying network and pairwise Fermi (PW-Fermi) for update rule. The key protocol is that a neighbor with more weight resulting from the conformity would be more likely selected as a pairwise opponent in the PW-Fermi updating process instead of random selection the conventional model presuming. A series of systematic simulations confirms that our model realizes more enhanced network reciprocity than the conventional SPD model. We elucidated its mechanism by means of considering on the concept of END period (meaning an initial period in which the global-cooperation fraction decreases from its initial value) and EXP periods (meaning the period following to END period in which global-cooperation increases) that substantially explaining how cooperative clusters survive in initial period and extend to defective zones afterwards.

Suggested Citation

  • Ahsan Habib, Md. & Tanaka, Masaki & Tanimoto, Jun, 2020. "How does conformity promote the enhancement of cooperation in the network reciprocity in spatial prisoner's dilemma games?," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303969
    DOI: 10.1016/j.chaos.2020.109997
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920303969
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tanimoto, Jun, 2009. "Promotion of cooperation through co-evolution of networks and strategy in a 2 × 2 game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 953-960.
    2. Tanimoto, Jun & Nakata, Makoto & Hagishima, Aya & Ikegaya, Naoki, 2012. "Spatially correlated heterogeneous aspirations to enhance network reciprocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 680-685.
    3. Keizo Shigaki & Zhen Wang & Jun Tanimoto & Eriko Fukuda, 2013. "Effect of Initial Fraction of Cooperators on Cooperative Behavior in Evolutionary Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-7, November.
    4. C.-L. Tang & W.-X. Wang & X. Wu & B.-H. Wang, 2006. "Effects of average degree on cooperation in networked evolutionary game," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 53(3), pages 411-415, October.
    5. Kokubo, Satoshi & Wang, Zhen & Tanimoto, Jun, 2015. "Spatial reciprocity for discrete, continuous and mixed strategy setups," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 552-568.
    6. Alam, Muntasir & Nagashima, Keisuke & Tanimoto, Jun, 2018. "Various error settings bring different noise-driven effects on network reciprocity in spatial prisoner's dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 338-346.
    7. Tanimoto, Jun, 2013. "Coevolutionary, coexisting learning and teaching agents model for prisoner’s dilemma games enhancing cooperation with assortative heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2955-2964.
    8. Shu, Feng & Liu, Yaojun & Liu, Xingwen & Zhou, Xiaobing, 2019. "Memory-based conformity enhances cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 480-490.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khan, Md. Mamun-Ur-Rashid & Arefin, Md. Rajib & Tanimoto, Jun, 2022. "Investigating the trade-off between self-quarantine and forced quarantine provisions to control an epidemic: An evolutionary approach," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    2. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Lai, Joel Weijia & Cheong, Kang Hao, 2024. "A Parrondo paradoxical interplay of reciprocity and reputation in social dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    4. Tori, Risa & Tanimoto, Jun, 2022. "A study on prosocial behavior of wearing a mask and self-quarantining to prevent the spread of diseases underpinned by evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Zhang, Wei & Brandes, Ulrik, 2023. "Is cooperation sustained under increased mixing in evolutionary public goods games on networks?," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    6. Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Adaptive persistence based on environment comparison enhances cooperation in evolutionary games," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    7. Quan, Ji & Dong, Xu & Wang, Xianjia, 2022. "Rational conformity behavior in social learning promotes cooperation in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 425(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Peican & Wang, Xiaoyu & Jia, Danyang & Guo, Yangming & Li, Shudong & Chu, Chen, 2020. "Investigating the co-evolution of node reputation and edge-strategy in prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Ping Zhu & Guiyi Wei, 2014. "Stochastic Heterogeneous Interaction Promotes Cooperation in Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    3. Xu, Hedong & Tian, Cunzhi & Ye, Wenxing & Fan, Suohai, 2018. "Effects of investors’ power correlations in the power-based game on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 424-432.
    4. Tanimoto, Jun, 2010. "The effect of assortativity by degree on emerging cooperation in a 2×2 dilemma game played on an evolutionary network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3325-3335.
    5. Shu, Gang & Du, Xia & Li, Ya, 2016. "Surrounding information consideration promotes cooperation in Prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 689-694.
    6. Zhong, Weicai & Abbass, Hussein A. & Bender, Axel & Liu, Jing, 2011. "Mixed strategy and coevolution dynamics in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 410-417.
    7. Mao, Fubing & Ma, Lijia & He, Qiang & Xiao, Gaoxi, 2020. "Match making in complex social networks," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    8. Lv, Shaojie & Wang, Xianjia, 2020. "The impact of heterogeneous investments on the evolution of cooperation in public goods game with exclusion," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    9. Shen, Chen & Li, Xiaoping & Shi, Lei & Deng, Zhenghong, 2017. "Asymmetric evaluation promotes cooperation in network population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 391-397.
    10. Zhang, Boyu & An, Xinmiao & Dong, Yali, 2021. "Conditional cooperator enhances institutional punishment in public goods game," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    11. Tanimoto, Jun, 2009. "Promotion of cooperation through co-evolution of networks and strategy in a 2 × 2 game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 953-960.
    12. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2021. "Exploring the dilemma of overcapacity governance in China's coal industry: A tripartite evolutionary game model," Resources Policy, Elsevier, vol. 71(C).
    13. Askar, S.S. & Alnowibet, K., 2016. "Cooperation versus noncooperation: Cournot duopolistic game based on delay and time-dependent parameters," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 580-584.
    14. Lotfi, Nastaran & Rodrigues, Francisco A., 2022. "On the effect of memory on the Prisoner’s Dilemma game in correlated networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    15. Utsumi, Shinobu & Tatsukawa, Yuichi & Tanimoto, Jun, 2022. "Does a resource-storing mechanism favor “the wealthy do not fight”?—An approach from evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    16. Song, Qun & Cao, Zhaoheng & Tao, Rui & Jiang, Wei & Liu, Chen & Liu, Jinzhuo, 2020. "Conditional neutral punishment promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    17. Zhu, Jiabao & Liu, Xingwen, 2021. "The number of strategy changes can be used to promote cooperation in spatial snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    18. Chen, Zhuo & Gao, Jianxi & Cai, Yunze & Xu, Xiaoming, 2011. "Evolutionary prisoner’s dilemma game in flocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 50-56.
    19. Zhuang, Qian & Wang, Dong & Fan, Ying & Di, Zengru, 2012. "Evolution of cooperation in a heterogeneous population with influential individuals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1735-1741.
    20. Jin, Jiahua & Chu, Chen & Shen, Chen & Guo, Hao & Geng, Yini & Jia, Danyang & Shi, Lei, 2018. "Heterogeneous fitness promotes cooperation in the spatial prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 141-146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.