IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v178y2024ics0960077923012663.html
   My bibliography  Save this article

Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration

Author

Listed:
  • Kulsum, Umma
  • Alam, Muntasir
  • Kamrujjaman, Md.

Abstract

This study aims to evaluate mankind’s vaccination behavior for two alternative vaccines through the incorporation of imitation and aspiration dynamics in an existing setup of the mean-field approximation. Individuals may be immunized in advance of an outbreak to prevent infection. However, due to the immunization’s imperfections, expense, or people’s reluctance to get immunized, a number of individuals might opt to be immunized later. Our model can simulate two scenarios of social conundrums, one caused by early vaccination and operating on a global time scale. The other is driven by delayed vaccination and working on a local time scale. The epidemic scenario gets worse as the strategy updating interval gets longer. This work provides a comparative analysis between the dynamics of imitation and aspiration. We integrate the imitation dynamics with various cost and efficacy variations of these vaccines. Then, we demonstrate the impact of symmetric and asymmetric level of expectations for both vaccines on aspiration dynamics. The symmetric expectations for both vaccines continue to have a negative relationship with their cost and a positive association with the efficacy of the vaccines. If one of the vaccines is more expensive, the consumer may opt for another. However, fewer aspiration for the early vaccine can improve the total vaccine coverage and hence help to limit epidemic disease in the case of an asymmetric degree of aspiration for the early-delayed vaccination model.

Suggested Citation

  • Kulsum, Umma & Alam, Muntasir & Kamrujjaman, Md., 2024. "Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012663
    DOI: 10.1016/j.chaos.2023.114364
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923012663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei Shi & Ivan Romić & Yongjuan Ma & Zhen Wang & Boris Podobnik & H. Eugene Stanley & Petter Holme & Marko Jusup, 2020. "Freedom of choice adds value to public goods," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(30), pages 17516-17521, July.
    2. Bin Wu & Feng Fu & Long Wang, 2011. "Imperfect Vaccine Aggravates the Long-Standing Dilemma of Voluntary Vaccination," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-7, June.
    3. Jorgen W. Weibull, 1997. "Evolutionary Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262731215, December.
    4. Chris T Bauch & Samit Bhattacharyya, 2012. "Evolutionary Game Theory and Social Learning Can Determine How Vaccine Scares Unfold," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-12, April.
    5. Kabir, K.M. Ariful, 2021. "How evolutionary game could solve the human vaccine dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Du, Chunpeng & Guo, Keyu & Lu, Yikang & Jin, Haoyu & Shi, Lei, 2023. "Aspiration driven exit-option resolves social dilemmas in the network," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    7. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    8. Iwamura, Yoshiro & Tanimoto, Jun, 2018. "Realistic decision-making processes in a vaccination game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 236-241.
    9. Yin, Lu & Lu, YiKang & Du, ChunPeng & Shi, Lei, 2022. "Effect of vaccine efficacy on disease transmission with age-structured," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    10. Alam, Muntasir & Kuga, Kazuki & Tanimoto, Jun, 2019. "Three-strategy and four-strategy model of vaccination game introducing an intermediate protecting measure," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 408-422.
    11. Lu, Yikang & Geng, Yini & Gan, Wen & Shi, Lei, 2019. "Impacts of conformist on vaccination campaign in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    12. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Effect of information spreading to suppress the disease contagion on the epidemic vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 180-187.
    13. Hammerstein, Peter & Selten, Reinhard, 1994. "Game theory and evolutionary biology," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 2, chapter 28, pages 929-993, Elsevier.
    14. Bin Wu & Lei Zhou, 2018. "Individualised aspiration dynamics: Calculation by proofs," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-15, September.
    15. Alam, Muntasir & Tanaka, Masaki & Tanimoto, Jun, 2019. "A game theoretic approach to discuss the positive secondary effect of vaccination scheme in an infinite and well-mixed population," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 201-213.
    16. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Evolutionary vaccination game approach in metapopulation migration model with information spreading on different graphs," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 41-55.
    17. Fukuda, Eriko & Kokubo, Satoshi & Tanimoto, Jun & Wang, Zhen & Hagishima, Aya & Ikegaya, Naoki, 2014. "Risk assessment for infectious disease and its impact on voluntary vaccination behavior in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 1-9.
    18. Nagashima, Keisuke & Tanimoto, Jun, 2019. "A stochastic Pairwise Fermi rule modified by utilizing the average in payoff differences of neighbors leads to increased network reciprocity in spatial prisoner's dilemma games," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 661-669.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kabir, K.M. Ariful, 2021. "How evolutionary game could solve the human vaccine dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Cui, Guang-Hai & Wang, Zhen & Li, Jun-Li & Jin, Xing & Zhang, Zhi-Wang, 2021. "Influence of precaution and dynamic post-indemnity based insurance policy on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    3. Kabir, KM Ariful & Kuga, Kazuki & Tanimoto, Jun, 2020. "The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network- A theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    4. Alam, Muntasir & Ida, Yuki & Tanimoto, Jun, 2021. "Abrupt epidemic outbreak could be well tackled by multiple pre-emptive provisions-A game approach considering structured and unstructured populations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    5. Wang, Mengyao & Pan, Qiuhui & He, Mingfeng, 2020. "The interplay of behaviors and attitudes in public goods game considering environmental investment," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    6. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    7. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    8. Vivekanandhan, Gayathri & Nourian Zavareh, Mahdi & Natiq, Hayder & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Svetec, Milan, 2022. "Investigation of vaccination game approach in spreading covid-19 epidemic model with considering the birth and death rates," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    9. Jiang, Bei & Yuan, Lin & Zou, Rongcheng & Su, Rui & Mi, Yuqiang, 2023. "The effect of migration on vaccination dilemma in networked populations," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    10. Alam, Muntasir & Tanaka, Masaki & Tanimoto, Jun, 2019. "A game theoretic approach to discuss the positive secondary effect of vaccination scheme in an infinite and well-mixed population," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 201-213.
    11. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Ariful Kabir, K.M. & Tanimoto, Jun, 2021. "A cyclic epidemic vaccination model: Embedding the attitude of individuals toward vaccination into SVIS dynamics through social interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    13. You, Tao & Wang, Peng & Jia, Danyang & Yang, Fei & Cui, Xiaodong & Liu, Chen, 2020. "The effects of heterogeneity of updating rules on cooperation in spatial network," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    14. Kabir, KM Ariful & Chowdhury, Atiqur & Tanimoto, Jun, 2021. "An evolutionary game modeling to assess the effect of border enforcement measures and socio-economic cost: Export-importation epidemic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    15. Wang, Jianwei & Xu, Wenshu & Chen, Wei & Yu, Fengyuan & He, Jialu, 2021. "Information sharing can suppress the spread of epidemics: Voluntary vaccination game on two-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    16. Wang, Jianwei & Wang, Rong & Yu, Fengyuan & Wang, Ziwei & Li, Qiaochu, 2020. "Learning continuous and consistent strategy promotes cooperation in prisoner’s dilemma game with mixed strategy," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    17. Lu, Chun & Liu, Honghui & Zhang, De, 2021. "Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    18. Han, Dun & Wang, Xiao, 2023. "Vaccination strategies and virulent mutation spread: A game theory study," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    19. Benyun Shi & Guangliang Liu & Hongjun Qiu & Yu-Wang Chen & Shaoliang Peng, 2019. "Voluntary Vaccination through Perceiving Epidemic Severity in Social Networks," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    20. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Effect of information spreading to suppress the disease contagion on the epidemic vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 180-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.