IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v475y2024ics0096300324002212.html
   My bibliography  Save this article

Evolutionary game dynamics and the phase portrait diversity in a pandemic scenario

Author

Listed:
  • Mendonça, J.P.
  • Brum, Arthur A.
  • Lyra, M.L.
  • Lira, Sérgio A.

Abstract

Modeling the time evolution of a pandemic in distinct social and economic environments has proven to be a great challenge for scientists due to the strong coupling of infection dynamics to complex collective human behavior. In this work, we propose a relatively simple extension of the classical Susceptible-Infected-Recovered (SIR) model that encompasses evolutionary game imitation dynamics and is capable of reproducing basic features of real data such as recurrent waves with suppression and re-bounce of cases. In particular, we depict different quantitative and qualitative aspects of the infection time series by representing them as trajectories in a modified phase portrait.

Suggested Citation

  • Mendonça, J.P. & Brum, Arthur A. & Lyra, M.L. & Lira, Sérgio A., 2024. "Evolutionary game dynamics and the phase portrait diversity in a pandemic scenario," Applied Mathematics and Computation, Elsevier, vol. 475(C).
  • Handle: RePEc:eee:apmaco:v:475:y:2024:i:c:s0096300324002212
    DOI: 10.1016/j.amc.2024.128749
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324002212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timothy C Reluga, 2010. "Game Theory of Social Distancing in Response to an Epidemic," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-9, May.
    2. Amaral, Marco A. & Oliveira, Marcelo M. de & Javarone, Marco A., 2021. "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Wang, Zhishuang & Guo, Quantong & Sun, Shiwen & Xia, Chengyi, 2019. "The impact of awareness diffusion on SIR-like epidemics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 134-147.
    4. Chris T Bauch & Samit Bhattacharyya, 2012. "Evolutionary Game Theory and Social Learning Can Determine How Vaccine Scares Unfold," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-12, April.
    5. Kreps, David M., 1990. "Game Theory and Economic Modelling," OUP Catalogue, Oxford University Press, number 9780198283812.
    6. Gabriel G Katul & Assaad Mrad & Sara Bonetti & Gabriele Manoli & Anthony J Parolari, 2020. "Global convergence of COVID-19 basic reproduction number and estimation from early-time SIR dynamics," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunhan Huang & Quanyan Zhu, 2022. "Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review," Dynamic Games and Applications, Springer, vol. 12(1), pages 7-48, March.
    2. Zhang, Rongping & Liu, Maoxing & Xie, Boli, 2022. "The analysis of discrete-time epidemic model on networks with protective measures on game theory," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Oestereich, André L. & Pires, Marcelo A. & Crokidakis, Nuno & Cajueiro, Daniel O., 2023. "Optimal rewiring in adaptive networks in multi-coupled vaccination, epidemic and opinion dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Khan, Md. Mamun-Ur-Rashid & Arefin, Md. Rajib & Tanimoto, Jun, 2022. "Investigating the trade-off between self-quarantine and forced quarantine provisions to control an epidemic: An evolutionary approach," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    5. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    6. Jarratt, Denise & Ceric, Arnela, 2015. "The complexity of trust in business collaborations," Australasian marketing journal, Elsevier, vol. 23(1), pages 2-12.
    7. Zhu, Linhe & Liu, Wenshan & Zhang, Zhengdi, 2021. "Interplay between epidemic and information spreading on multiplex networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 268-279.
    8. Ceddia, M.G. & Bardsley, N.O. & Goodwin, R. & Holloway, G.J. & Nocella, G. & Stasi, A., 2013. "A complex system perspective on the emergence and spread of infectious diseases: Integrating economic and ecological aspects," Ecological Economics, Elsevier, vol. 90(C), pages 124-131.
    9. Send, Jonas & Serena, Marco, 2022. "An empirical analysis of insistent bargaining," Journal of Economic Psychology, Elsevier, vol. 90(C).
    10. Kulsum, Umma & Alam, Muntasir & Kamrujjaman, Md., 2024. "Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    11. van Damme, E.E.C., 1995. "Game theory : The next stage," Other publications TiSEM 7779b0f9-bef5-45c7-ae6b-7, Tilburg University, School of Economics and Management.
    12. Christian Koboldt, 1996. "Consistent planning, backwards induction, and rule-governed behavior," Constitutional Political Economy, Springer, vol. 7(1), pages 35-48, March.
    13. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    14. Hutton, Trevor & Sumaila, Ussif Rashid, 2002. "Natural Resource Accounting And South African Fisheries: A Bio-Economic Assessment Of The West Coast Deep-Sea Hake Fishery With Reference To The Optimal Utilisation And Management Of The Resource," Discussion Papers 18018, University of Pretoria, Center for Environmental Economics and Policy in Africa.
    15. Killian J. McCarthy & Frederik van Doorn & Brigitte Unger, 2011. "Tax Competition and the Harmonisation of Corporate Tax Rates in Europe," Chapters, in: Miroslav N. Jovanović (ed.), International Handbook on the Economics of Integration, Volume II, chapter 20, Edward Elgar Publishing.
    16. Plan, Asaf, 2023. "Symmetry in n-player games," Journal of Economic Theory, Elsevier, vol. 207(C).
    17. Deka, Aniruddha & Bhattacharyya, Samit, 2022. "The effect of human vaccination behaviour on strain competition in an infectious disease: An imitation dynamic approach," Theoretical Population Biology, Elsevier, vol. 143(C), pages 62-76.
    18. Yunhwan Kim & Ana Vivas Barber & Sunmi Lee, 2020. "Modeling influenza transmission dynamics with media coverage data of the 2009 H1N1 outbreak in Korea," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-21, June.
    19. Gregory Gutin & Tomohiro Hirano & Sung-Ha Hwang & Philip R. Neary & Alexis Akira Toda, 2021. "The effect of social distancing on the reach of an epidemic in social networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 629-647, July.
    20. Mohler, George & Bertozzi, Andrea L. & Carter, Jeremy & Short, Martin B. & Sledge, Daniel & Tita, George E. & Uchida, Craig D. & Brantingham, P. Jeffrey, 2020. "Impact of social distancing during COVID-19 pandemic on crime in Los Angeles and Indianapolis," Journal of Criminal Justice, Elsevier, vol. 68(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:475:y:2024:i:c:s0096300324002212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.