IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v269y2015icp594-605.html
   My bibliography  Save this article

pth moment asymptotic stability for neutral stochastic functional differential equations with Lévy processes

Author

Listed:
  • Xu, Yan
  • He, Zhimin
  • Wang, Peiguang

Abstract

In this paper, we will consider a class of neutral stochastic functional differential equations with Lévy processes. Lévy processes contain a number of very important processes as special cases such as Brownian motion, the Poisson process, stable and self-decomposable processes and subordinators, and so on. But its sample paths are discontinuity, which makes the analysis more difficult. In this paper, we try to get over this difficulty. The contributions of this paper are as follows: (a) we will use Lyapunov functional method to study the pth moment asymptotic stability and almost sure asymptotic stability of neutral stochastic functional differential equations with Lévy processes; (b) under the result of (a), we will investigate two types of continuity of the solution: continuous in the pth moment and continuous in probability. Finally, we provide an example to illustrate the usefulness of the obtained results.

Suggested Citation

  • Xu, Yan & He, Zhimin & Wang, Peiguang, 2015. "pth moment asymptotic stability for neutral stochastic functional differential equations with Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 594-605.
  • Handle: RePEc:eee:apmaco:v:269:y:2015:i:c:p:594-605
    DOI: 10.1016/j.amc.2015.07.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315009893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.07.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Yong & Pei, Bin & Guo, Guobin, 2015. "Existence and stability of solutions to non-Lipschitz stochastic differential equations driven by Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 398-409.
    2. Bao, Jianhai & Hou, Zhenting & Yuan, Chenggui, 2009. "Stability in distribution of neutral stochastic differential delay equations with Markovian switching," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1663-1673, August.
    3. Mao, Wei & Zhu, Quanxin & Mao, Xuerong, 2015. "Existence, uniqueness and almost surely asymptotic estimations of the solutions to neutral stochastic functional differential equations driven by pure jumps," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 252-265.
    4. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
    5. You, Surong & Mao, Wei & Mao, Xuerong & Hu, Liangjian, 2015. "Analysis on exponential stability of hybrid pantograph stochastic differential equations with highly nonlinear coefficients," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 73-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan, Fangzhe & Hu, Po & Chen, Huabin, 2020. "Stability analysis of neutral stochastic differential delay equations driven by Lévy noises," Applied Mathematics and Computation, Elsevier, vol. 375(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weimin Chen & Qian Ma & Lanning Wang & Huiling Xu, 2018. "Stabilisation and control of neutral stochastic delay Markovian jump systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(1), pages 58-67, January.
    2. Wan, Fangzhe & Hu, Po & Chen, Huabin, 2020. "Stability analysis of neutral stochastic differential delay equations driven by Lévy noises," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    3. Zhang, Tian & Chen, Huabin, 2019. "The stability with a general decay of stochastic delay differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 294-307.
    4. Chen, Weimin & Zhang, Baoyong & Ma, Qian, 2018. "Decay-rate-dependent conditions for exponential stability of stochastic neutral systems with Markovian jumping parameters," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 93-105.
    5. Wu, Fuke & Hu, Shigeng, 2011. "Khasminskii-type theorems for stochastic functional differential equations with infinite delay," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1690-1694, November.
    6. Song, Gongfei & Zhang, Zimeng & Zhu, Yanan & Li, Tao, 2022. "Discrete-time control for highly nonlinear neutral stochastic delay systems," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    7. Fu, Xiaozheng & Zhu, Quanxin & Guo, Yingxin, 2019. "Stabilization of stochastic functional differential systems with delayed impulses," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 776-789.
    8. Chang, Zhengbo & Meng, Xinzhu & Lu, Xiao, 2017. "Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 103-116.
    9. Liu, Lidan & Meng, Xinzhu & Zhang, Tonghua, 2017. "Optimal control strategy for an impulsive stochastic competition system with time delays and jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 99-113.
    10. Song, Bo & Zhang, Ya & Park, Ju H., 2021. "H∞ control for Poisson-driven stochastic systems," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    11. Li, Zhi & Zhang, Wei, 2017. "Stability in distribution of stochastic Volterra–Levin equations," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 20-27.
    12. Lu, Boliang & Zhu, Quanxin, 2024. "Stability of switched neutral stochastic functional systems with different structures under high nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    13. Abouagwa, Mahmoud & Liu, Jicheng & Li, Ji, 2018. "Carathéodory approximations and stability of solutions to non-Lipschitz stochastic fractional differential equations of Itô-Doob type," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 143-153.
    14. Tan, Li & Jin, Wei & Suo, Yongqiang, 2015. "Stability in distribution of neutral stochastic functional differential equations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 27-36.
    15. Abdelhamid Mohammed Djaouti & Zareen A. Khan & Muhammad Imran Liaqat & Ashraf Al-Quran, 2024. "Existence, Uniqueness, and Averaging Principle of Fractional Neutral Stochastic Differential Equations in the L p Space with the Framework of the Ψ-Caputo Derivative," Mathematics, MDPI, vol. 12(7), pages 1-21, March.
    16. Jaroszewska, Joanna, 2013. "On asymptotic equicontinuity of Markov transition functions," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 943-951.
    17. Zhan, Weijun & Gao, Yan & Guo, Qian & Yao, Xiaofeng, 2019. "The partially truncated Euler–Maruyama method for nonlinear pantograph stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 109-126.
    18. Yinfang Song & Quan Yin & Yi Shen, 2015. "A note on attraction and stability of neutral stochastic delay differential equations with Markovian switching," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(8), pages 1401-1410, June.
    19. Li, Bing, 2017. "A note on stability of hybrid stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 45-57.
    20. Ruan, Dehao & Xu, Liping & Luo, Jiaowan, 2019. "Stability of hybrid stochastic functional differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 832-841.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:269:y:2015:i:c:p:594-605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.