IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v477y2017icp99-113.html
   My bibliography  Save this article

Optimal control strategy for an impulsive stochastic competition system with time delays and jumps

Author

Listed:
  • Liu, Lidan
  • Meng, Xinzhu
  • Zhang, Tonghua

Abstract

Driven by both white and jump noises, a stochastic delayed model with two competitive species in a polluted environment is proposed and investigated. By using the comparison theorem of stochastic differential equations and limit superior theory, sufficient conditions for persistence in mean and extinction of two species are established. In addition, we obtain that the system is asymptotically stable in distribution by using ergodic method. Furthermore, the optimal harvesting effort and the maximum of expectation of sustainable yield (ESY) are derived from Hessian matrix method and optimal harvesting theory of differential equations. Finally, some numerical simulations are provided to illustrate the theoretical results.

Suggested Citation

  • Liu, Lidan & Meng, Xinzhu & Zhang, Tonghua, 2017. "Optimal control strategy for an impulsive stochastic competition system with time delays and jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 99-113.
  • Handle: RePEc:eee:phsmap:v:477:y:2017:i:c:p:99-113
    DOI: 10.1016/j.physa.2017.02.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117302042
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.02.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Shujing & Liu, Yujiang & Nieto, Juan J. & Andrade, Helena, 2011. "Seasonality and mixed vaccination strategy in an epidemic model with vertical transmission," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(9), pages 1855-1868.
    2. Ma, Weijun & Ding, Baocang & Zhang, Qimin, 2015. "The existence and asymptotic behaviour of energy solutions to stochastic age-dependent population equations driven by Levy processes," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 656-665.
    3. Bao, Jianhai & Hou, Zhenting & Yuan, Chenggui, 2009. "Stability in distribution of neutral stochastic differential delay equations with Markovian switching," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1663-1673, August.
    4. Zhang, Xinhong & Li, Wenxue & Liu, Meng & Wang, Ke, 2015. "Dynamics of a stochastic Holling II one-predator two-prey system with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 571-582.
    5. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2017. "Asymptotic behavior of stochastic multi-group epidemic models with distributed delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 527-541.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Chao & Xun, Xinying & Zhang, Qingling & Li, Yuanke, 2019. "Dynamical analysis and optimal control in a hybrid stochastic double delayed bioeconomic system with impulsive contaminants emission and Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 99-118.
    2. Wenxu Ning & Zhijun Liu & Lianwen Wang & Ronghua Tan, 2021. "Analysis of a Stochastic Competitive Model with Saturation Effect and Distributed Delay," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1435-1459, December.
    3. Liu, Guodong & Meng, Xinzhu, 2019. "Optimal harvesting strategy for a stochastic mutualism system in a polluted environment with regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    4. Liu, Qiong & Zhang, Meng & Chen, Lansun, 2019. "State feedback impulsive therapy to SIS model of animal infectious diseases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 222-232.
    5. Liu, Meng & Bai, Chuanzhi, 2020. "Optimal harvesting of a stochastic mutualism model with regime-switching," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    6. Liu, Yanwei & Zhang, Tonghua & Liu, Xia, 2020. "Investigating the interactions between Allee effect and harvesting behaviour of a single species model: An evolutionary dynamics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    7. Liu, Meng & Yu, Jingyi & Mandal, Partha Sarathi, 2018. "Dynamics of a stochastic delay competitive model with harvesting and Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 335-349.
    8. Liu, Chao & Xun, Xinying & Zhang, Guilai & Li, Yuanke, 2020. "Stochastic dynamics and optimal control in a hybrid bioeconomic system with telephone noise and Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. Liu, Chao & Wang, Luping & Zhang, Qingling & Li, Yuanke, 2018. "Modeling and dynamical analysis of a triple delayed prey–predator–scavenger system with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1216-1239.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Hongjun & Wang, Ying, 2019. "Stochastic mutualism model under regime switching with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 355-375.
    2. Yang, Ruizhi, 2017. "Bifurcation analysis of a diffusive predator–prey system with Crowley–Martin functional response and delay," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 131-139.
    3. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2018. "Stationary distribution and extinction of a stochastic predator–prey model with additional food and nonlinear perturbation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 226-239.
    4. Wang, Sheng & Hu, Guixin & Wei, Tengda & Wang, Linshan, 2020. "Permanence of hybrid competitive Lotka–Volterra system with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Fu, Xiaoming, 2019. "On invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1008-1023.
    6. Chang, Zhengbo & Meng, Xinzhu & Lu, Xiao, 2017. "Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 103-116.
    7. Guo, Zun-Guang & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen & Li, Li & Li, Can, 2020. "Spatial dynamics of an epidemic model with nonlocal infection," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    8. Weimin Chen & Qian Ma & Lanning Wang & Huiling Xu, 2018. "Stabilisation and control of neutral stochastic delay Markovian jump systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(1), pages 58-67, January.
    9. Guodong Liu & Xiaohong Wang & Xinzhu Meng & Shujing Gao, 2017. "Extinction and Persistence in Mean of a Novel Delay Impulsive Stochastic Infected Predator-Prey System with Jumps," Complexity, Hindawi, vol. 2017, pages 1-15, June.
    10. Xu, Yan & He, Zhimin & Wang, Peiguang, 2015. "pth moment asymptotic stability for neutral stochastic functional differential equations with Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 594-605.
    11. Wan, Fangzhe & Hu, Po & Chen, Huabin, 2020. "Stability analysis of neutral stochastic differential delay equations driven by Lévy noises," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    12. Wang, Sheng & Wang, Linshan & Wei, Tengda, 2018. "Permanence and asymptotic behaviors of stochastic predator–prey system with Markovian switching and Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 294-311.
    13. Sheng Wang & Linshan Wang & Tengda Wei, 2017. "Well-Posedness and Asymptotic Behaviors for a Predator-Prey System with Lévy Noise," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 715-725, September.
    14. Li, Zhi & Zhang, Wei, 2017. "Stability in distribution of stochastic Volterra–Levin equations," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 20-27.
    15. Tan, Li & Jin, Wei & Suo, Yongqiang, 2015. "Stability in distribution of neutral stochastic functional differential equations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 27-36.
    16. Chinnadurai, M. & Fatini, Mohamed El & Rathinasamy, A., 2023. "Stochastic perturbation to 2-LTR dynamical model in HIV infected patients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 473-497.
    17. Shao, Yuanfu, 2022. "Global stability of a delayed predator–prey system with fear and Holling-type II functional response in deterministic and stochastic environments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 65-77.
    18. Meng, Xinzhu & Li, Fei & Gao, Shujing, 2018. "Global analysis and numerical simulations of a novel stochastic eco-epidemiological model with time delay," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 701-726.
    19. Gao, Miaomiao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Threshold behavior of a stochastic Lotka–Volterra food chain chemostat model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 191-203.
    20. Jaroszewska, Joanna, 2013. "On asymptotic equicontinuity of Markov transition functions," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 943-951.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:477:y:2017:i:c:p:99-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.